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1. Introduction

This report addresses the topic of environment extensibility
as part of an effort to define a Joint Service Software
Engineering Environment (JSSEE). The concept of a JSSEE has
evolved from work in the Software Engineering Environments area
within the Software Technology for Adaptable, Reliable Systems
(STARS) Program of the U.S. Department of Defense. A JSSEE is
intended to be a modern, comprehensive software engineering
environment, which implies that it must be capable of gracefully
absorbing new software development tools and technology as they
become available. This in turn implies that extensibility is a
central concern in the definition and development of JSSEE
environments.

In the remainder of this initial section, we treat the
necessary preliminary issues by providing definitions related to
environment extensibility, considering some dimensions of the
extensibility question and framing a statement of the problem we
have addressed. Then, in Section 2, we review a variety of
existing environments and make observations about the structures
and technology that have enhanced the extensibility of these
environments. Architectural considerations related to environment
extensibility are discussed in Section 3 and strategies for
creating and evolving extensible environments are the subject of
Section 4. In the conclusion, Section 5, we reiterate the major
conclusions and recommendations stemming from this study.

1.1. Definition of Environment Extensibility

In this section we define the concept of environment
extensibility and distinguish it from other types of changes to an
environment. To do this, we first establish some terminology
regarding environments themselves, in order that the distinctions
that we wish to make may be as crisp and clear as possible.

A software engineering environment is, for purposes of this
report, a computer-based, automated utility to assist in
activities associated with the creation and/or evolution
(including in-service support) of a software system. It is part
of a larger environment that includes unautomated tools supporting
software creation and evolution. By 'environment', however, we
will mean the automated utility that is the software engineering
environment.

An environment is composed of hardware and software. Our
interest here is in the software component of that utility, and
more particularly that part of the software component which is
dedicated to providing the functionality available to the
environment's users. We therefore make the following definitions:

DEFN: the 'environment host' is a virtual machine providing



the (usually fairly primitive) objects and operations useful
in implementing the rest of the environment's software; the
environment host typically comprises some software in
addition to the underlying hardware upon which the
environment as a whole executes

DEFN: the 'environment body' is that software which
implements the environment's functionality and is itself
implemented upon the environment host

DEFN: the 'environment interface' is the software concerned
with delivery of the environment's functionality in an easily
usable form 41); the interface is primarily implemented upon
the environment host but may also use some of the facilities
provided by the environment body

Our view is depicted in Figure I and our focus is on that
part of the environment labeled "environment body" in the Figure
(2). By focusing in this way, we have turned our attention away
from issues that concern modern operating systems (these would be
treated in considering what we have called the environment host)
and issues that concern the human engineering of the environment
(these would be treated in considering what we have called the
environment interface (3)). Instead, we have turned our
attention, for the short two-month period of our study, to the
central core of the environment to get at the major issues that
affect environment extensibility.

An environment architecture is a model that helps in
understanding the environment -- Figure 1 gives a simple
architecture that helps understand the rough partitioning that
focuses our study. The architecture can be a model that helps the
users understand the environment's capabilities, but more usually
the model is oriented toward construction of the environment,
i.e., it is aimed at the environment's builders and/or maintainers
rather than its users [12]. For this study, we use the following
definition:

An interface is a shared boundary. In our usage, we allow the
interface to have a "width" and include software that mediates the
flow of information across the boundary.
2) Although we need to make the distinction between the
environment and its body to specify the scope of our work, we will
frequently use the word 'environment' to mean 'environment body'
except where the distinction needs to be made clear.
{31 Studies of the environment interface, including its
extensibility characteristics, have been reported on in (3] and
[23].
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DEFN: an 'environment ar'hitecture' is a
construction-oriented model of the environment's organization
which defines its major components and the rough logic of
their inter-relationships.

Our focus on the environment body means that we are
interested in the architecture for this part of an environment.

For the purposes of investigating environment extensibility,
we need to distinguish between the information stored in an
environment and the processors that work on this information {4).
This leads to the following definitions:

DEFN: an 'information fragment' is a component of an
environment body's architecture consisting of some data
pertaining to the software system being created or evolved or
to the project which is carrying out the creation or
evolution {5}

DEFN: a 'tool fragment' is a component of an environment
body's architecture that transforms information fragments or
creates new ones and contributes to providing some part of
the environment's functionality

DEFN: an 'information repository' is the collection of
information fragments

DEFN: a 'tool set' is the collection of tool fragments

The information and tool fragments are the fundamental parts
of the environment body. In addition to these fundamental parts,
an environment body's architecture must specify an infrastructure,
defined as follows:

DEFN: an 'infrastructure' is the component of an environment
body's architecture that specifies a structure for the
information repository and tool set

The infrastructure specifies the ways in which the fragments
interrelate and thus captures the organization of the information
fragments, the interactions among the tool fragments, and the ways

{4) This distinction may be of more general utility, but we do not
wish to argue that here.
(51 We speak as if an environment supports only a single project.
We do not preclude the possibility that an environment can
simultaneously support several projects -- it's just easier to
talk in these simpler terms and it does not restrict the
applicability of our conclusions.



in which tool fragments use and produce information fragments (6}
-- it provides, in essence, the "glue" that holds the parts
together in some logical manner reflecting the processing that
must be performed. It implies the existence, in the environment
body's implementation, of mechanisms for maintaining the specified
information organization (e.g., a database subsystem), supporting
the tool fragment interactions (e.g., a process management
subsystem), and controlling the utilization and production of
information fragments (e.g., an interface to the database system
that controls the retrieval and storage of information).

With the preceding definitions regarding environments and
their architecture, we can now give a precise statement of what we
mean by environment extensibility, distinguish it from other kinds
of changes to an environment, and relate it to environment
architecture issues.

DEFN: 'Environment extensibility' is the ability to modify an
environment in response to changes in the ways that the
environment will be used.

Changes in the ways that the environment will be used will
necessarily induce changes in the capabilities demanded by the
users and these changes may be either additions to, deletions
from, or modifications to the environment's functionality. It may
be possible to accommodate some of these changes through
modifications to the environment interface or environment host --
these are not of concern when considering the architecture of the
environment body as in our study. Therefore, we use the following
more specific definition:

DEFN: 'environment extensibility' is the ability to modify an
environment body in order to satisfy changes in the
requirements for the functionality provided at the boundarybetween the environment body and the environment interface

This version of the definition limits our concern to changes
needed to produce changes in the environment's functionality. The
scolke of our concern for various changes will be discussed more
extensively in the following subsection.

A fundamental assumption underlying this study is that the
architecture of an environment body can significantly influence
the environment's extensibility. A particular architecture may
make the changes involved in extending the environment easier ormore difficult. The architecture itself may or may not need to be

(6) In general, it might be possible that tool fragments
themselves are "consumed" and "produced" or that the
infrastructure changes dynamically over time. We do not consider
these more complicated situations here.

14N



modified in order to achieve some particular extension of the
* environment. It is precisely these issues that are the central

focus of this report.

1.2. Dimensions of Environment Extensibility and Scope of Our
Study

In this section, we indicate various reasons for changing an
environment and relate them to changes that both would and would
not be considered instances of environment extensibility under our
definition. We also consider some dimensions of the extensibility
issue, based primarily on properties of the changes that might be
made to the environment's functionality.

Changes to an environment will be precipitated by changes
external to the environment itself. Some of these external
changes are:

-- introucing a new team structure

-- hiring new members to the project team

-- starting a project in a new application area

-- starting a new project in the same application area

-- moving an environment into a new software creation and
evolution organization

-- changing the software development or project management
method or methodology

-- requiring more extensive automated support for a method or
methodology

-- requiring the use of a different language in which to

program

-- introducing new documentation requirements

We are interested in external changes such as these only to
the extent that they induce changes in the functionality required
of an environment. For example, we do not view employing the
environment with new personnel or on a new project, when it does
not require any modification to the required functionality, as a
situation requiring extensibility. Neither do we view minor
'tailoring' or 'customizing' (e.g., by defining abbreviations for
command names) as an instance of extensibility. Thus, we are not
interested in the root causes of change in this study; rather, we
are only interested in the need to provide a change in the
environment's functionality for whatever reason.

* 5
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A subtle, additional restriction follows from this focus on
functionality changes without regard to their cause. Without
concern for root, external causes, we cannot adequately consider
the effect that extensibility may have on the 'world' using an
environment. For example, a change in the team structure might
induce a change in the management support facilities and
accommodating this change might require a change in the management
method used for the project. In essence, we assume that any
perturbations or inter-linkages such as these are addressed before
a functionality change is requested or appropriately handled,
prehaps by requesting additional functionality changes, should
they occur.

We have also chosen to not consider changes that primarily
impact an environment's implementation. Some changes in this
category are:

-- moving an environment to a new host

-- enhancing the performance of the environment

-- implementing the environment in a new programming language

We recognize that changes such as these may incur significant
work. For example, porting may involve major (say if the move is
from a centralized to a distributed host) or minor (say if the
move is from one Ada-based host to another) revisions to the
environment. But we feel that they rarely, if ever, induce
significant changes to an environment's architecture. And so we
focus our study, without significant restriction in our minds, by
not considering implementationrelated changes; in particular, we
do not consider the issue of portability.

The ease of extending an environment is usually the primary
concern. But there are other concerns, among them:

-- time and cost: the resources consumed in extending the
environment

-- reliability: the extent to which the extended environment
will suitably deliver the new or modified functionality and
continue to suitably deliver the unmodified functionality

Usually, these concerns will be traded off against each
other. For example, it may sometimes be reasonable to enhance the
reliability of environment extension even though this may lead to
more cost, time, and/or difficulty in performing the extension.
While these other concerns are quite important, our study has
focused solely on the ease of extension.

Changes to an environment's functionality may have a variety
of properties, and it may be more or less difficult to modify an
environment depending on what these properties are. Among the
properties of a functionality change are:

%,
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-- longevity: ease of extension may depend on whether the
functionality change is to be temporary or permanent

-- frequency: it may be more difficult to respond to changes
that occur frequently

-- compatibility: the constraint that certain compatibility
constraints be observed may complicate the process of
extension

-- anticipation: it may be easier to accommodate an expected
functionality change than one that is completely
unanticipated

We have not considered how these various properties affect
the ease of extending an environment.

In summary, we have restricted our attention to the ease of
responding to changes in the environment's functionality without
regard for the specific causes inducing the functionality change
or the specific properties of the functionality change.

1.3. Statement of Problem

The objective of this report is to consider the relationship
between an environment body's architecture and the ease of
responding to changes in the functionality required of that
environment. Specifically, we seek to identify aspects of an
environment body's architecture which facilitate, inhibit, or are
unaffected by a need to respond to changes in an environment's
functionality, with the intent of:

-- providing a clearer understanding of architectural
considerations related to extensibility, and

-- contributing to the formulation of strategies for building
extensible environments.

Our observations and conclusions will be expressed in terms
of the tool set, information repository and infrastructure of an
environment's body.

2. Survey of Current Environment Extensibility Capabilities

Few, if any, current-day environments have been designed with
extensibility in mind. However. several existing environments are
extensible to some degree. In fact, of course, all environments
are extensible in the sense that, with a sufficiently large
expenditure of effort (possibly enough to rebuild the entire
environment), any environment can be extended. Our interest here
is in the extent to which certain capabilities make it relatively
easier to extend the environment.

7



In this section, we discuss the characteristics of several
existing environments that are pertinent to their extensibility.
For each environment, we first describe the environment's
architecture and then discuss the characteristics that facilitate
extension of the environment to meet new environment interface
requirements.

In addition to specific environments themselves,
extensibilityenhancing technology has been developed outside of
the context of any particular environment. Some of this
technology has been developed with the intent to use it in
environments; some has been developed for more general use.
Pieces of this technology pertinent to environment extensibility
are also discussed in this section.

Although it had been anticipated that a comprehensive
literature search would uncover either horror stories or success
stories related to environment extensibility, in fact no such
stories were found during our survey. We suspect that this means
environment developers and users are reticent to share their
experiences, in public at least, rather than that such stories do
not exist.

2.1. Extensibility in Current Environments

2.1.1. Toolpack/Odin

The Toolpack environment [21], created by a consortium of
university, Government and industrial research labs, is an
experimental environment created to support the development of
numerical analysis software in Fortran. Toolpack is a rare
example of an environment that was designed with extensibility
explicitly in mind. As a result, Toolpack's architecture as it
relates to extensibility is particularly interesting. The aspects
of that architecture most relevant to extensibility are contained
in the Odin subsystem.

Toolpack provides its users with a product-oriented
interface. Rather than specify what tools should be invoked, a
Toolpack user indicates what object (e.g., an object file, an test
report, etc.) is desired and, assuming that the object can in fact
be produced given the current state (e.g., no necessary inputs are
missing), Toolpack carries out the necessary steps to produce the
desired object.

Odin, developed at the University of Colorado, is intended to
serve as the basis for an extensible program development
environment. Odin is an outgrowth of the Toolpack project and an
extension of the

Integrated System of Tools (IST) subsystem found in Toolpack -
(7]. For our purposes here, Odin's major role is to determine how
an object requested by a user can be produced and then to cause

p -



the necessary steps to be carried out so that the requested object

is indeed produced.

2.1.1.1. Architecture of Toolpack/Odin

The Toolpack/Odin architecture consists of a collection of
tool fragments and a file system (see Figure 2). The file system
is in fact a virtual file system. This means that a specific file
need not actually be stored if it can be regenerated from other
files using one or more tool fragments. The result is that only a
small number out of the many files that a user believes to be in
existence may actually be physically present in a Toolpack file
system at any given time, but that from the user's point of view
they may all be considered to be present there. This situation
arises from the approach to defining information fragments and
their relationship employed in Toolpack.

The Toolpack/Odin approach is to treat all information
fragments as files or sets of files and to provide mechanisms
allowing users to define file types and operations specified in
terms of those file types. The various file types may be thought
of as distinct views of some part of a software system. For
example, test.f:fmt and test.f:obj might be two file types
corresponding to two different views of the Fortran program stored
in the file "test" (the extension .f denotes a Fortran base
(primitive) object type in Odin), the former a formatted view of
the source and the latter an object code view.

The tool fragments and information fragments, where each
information fragment corresponds to a file in the virtual file
system, in a Toolpack/Odin system are related through a structure
called the dependency graph (or dependency DAG, for directed
acyclic graph). A sample dependency graph appears in Figure 3.
This graph explicitly represents how every type of information
fragment defined in the Toolpack/Odin system can be created from
some other type of information fragment(s) through the application
of one or more tool fragments. Odin uses this information to
determine how a requested information fragment can be created,
then invokes the appropriate sequence of tool fragments with the
appropriate initial information fragment as input to achieve that
result. Naturally, as long as certain types of virtual files are
always retained in the physical file system (namely those
corresponding to nodes in the dependency graph that have arcs
emanating from them but no arcs coming into them) other types of
files (namely those corresponding to nodes with at least one arc
coming into them) never need to be retained in the physical file
system. Those file types that are not retained can always be
regenerated if needed, using the information in the dependency
graph.



2.1.1.2. Extensibility Aspects of Toolpack/Odin

One important extensibility aspect of the Toolpack/Odin
architecture is its use of small granularity tool fragments. This
approach of decomposing large tools into their constituent
fragments, then composing the appropriate fragments in order to
accomplish a particular task, is a significant boon to
extensibility. In particular, it encourages re-use of individual
fragments and provides building blocks to aid in the creation of
new tools.

Toolpack/Odin's use of typed information fragments is also
significant from the perspective of extensibility. Although the
information fragments tend to be of much larger granularity than
the tool fragments, the concept of fragments and the notion of
types are both valuable for extensibility, since sharing and
re-use of information fragments contributes in the same way as
sharing of tool fragments, while a type structure provides some
control over use of information fragments and the prospect of some
checking for correct usage patterns. Since Odin controls all tool
invocations, the Toolpack/Odin system does in fact enforce the
restriction that information fragments of a given type are only
used by tool fragments that they are intended to be used by.

Two languages are provided by Toolpack/Odin. One is a
command language, which permits a user to request the creation of
a view (file type or information fragment). Essentially, this
language lets a user name a view that is desired (e.g.,
test.f:obj) and optionally indicate where a copy of that view
should be stored (e.g., test.f:obj-test2.f:obj). By hiding the
exact nature of how effects are achieved, this language renders
the environment's internal structure more malleable while
preserving its external appearance to users and thus enhances
extensibility.

The other Toolpack/Odin language is a specification language
in which users can define new views and indicate how those views
are to be created. Odin transforms this information into a
derivation graph, which indicates what tools can be used to create
a file of one type from a file of some other type. This graph
then encodes the relationships among information interfaces and
tools, and provides an internal, accessible representation of all
the possible file types as well as the kinds of operations that
can be performed on them. Although its use in Toolpack/Odin is
limited, such internal accessible representations can
significantly enhance extensibility.



2.1.2. Ada Environments

Environments supporting the development of Ada programs were
defined in the mid-1970's as an outgrowth of the U.S. Department
of Defense Ada Program. The initial design and definition efforts
culminated in a definition document popularly called Stoneman [6]
which appeared in the late-1970's. An Ada Programming Support

* Environment, as defined in the Stoneman document, provides
automated support for the full spectrum of life cycle activities
for large, embedded software systems.

Multiple implementation efforts are currently in various
stages of completion for several environments supporting Ada
programming activities. The Ada Language System (ALS) f25] is
being built by SofTech under contract to the US Army. A
variation, called the Ada

Language System/Navy (ALS/N) [18], has been specified and is
currently under procurement by the US Navy. And the Ada
Integrated Environment (AIE) System [13] is being built by
Intermetrics under contract to the US Air Force. These current
Ada environment implementation efforts have directed most of their
attention to the environment capabilities supporting the
programming phase of software development.

*2.1.2.1. General Architecture of Ada Environments

The original specification of an architecture for
environments supporting the development of Ada software systems
appeared in the Stoneman document. This architecture, depicted in
Figure 4. consists of a hierarchy of virtual machines, with each

* virtual machine providing a base for implementing the next higher
level virtual machine. The most primitive virtual machine,
closest to the actual hardware, is called the Kernel Ada
Programming Support Environment (KAPSE). It provides basic
operating system services including terminal access facilities,
editing facilities, Ada runtime support, and data management. The
next virtual machine in the hierarchy is called the Minimal Ada
Programming Support Environment (MAPSE) and is essentially an Ada
virtual machine, providing the capability to prepare, compile and
execute Ada programs. The outermost virtual machine is the Ada
Programming Support Environment (APSE) itself, providing
capabilities supporting the team-based creation and evolution of
Ada software according to some general or specific method.

The data management capabilities specified by Stoneman are
only minimal extensions of a normal file system. Each information
fragment stored within the database is considered to be a
relatively large unit of information such as a program, report or
collection of test data. Each information fragment has a name by
which it can be uniquely retrieved. In addition, attributes in
the form 'keyvalue, can be used to categorize information
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fragments for the purposes of retrieval. Some of these attributes
are pre-defined but the set of categorizing attributes can be
extended as required. The attributes provide a flexible way of
imposing a logical organization on the information fragments so
they can be retrieved according to criteria that reflect concerns
such as version control, documentation, and quality control.

2.1.2.2. Architectures for the Current Implementation Efforts

The current, Government-sponsored Ada environment
implementation efforts have adhered, in general terms, to the
general architecture specified in Stoneman. The particular
architectures refine the general architecture to:

-- reflect the particular ensemble of tools included in the
environment,

-- accommodate the particular computer and operating system
upon which the environment is hosted,

-- accommodate the specific database organization chosen for
the implementation, and

-- provide a usable, Ada-like command language. 41
The architecture of the ALS, as pictured in Figure 5, is

essentially identical to the Stoneman architecture except 1) for
the recognition of the KAPSE as being a virtual machine layer
built on top of the native operating system, and 2) the lack of a
distinction between the MAPSE and APSE virtual machine layers. An
alternative view of the architecture is given in Figure 6. This W,
view is more oriented to explaining to environment users the
dynamics of system operation under typical scenarios and, as such,
distinguishes the database portion of the system as a separate
layer which supports the operations carried out by the individual
tools.

A major aspect of the ALS effort is the definition of a much
richer set of pre-defined information fragment attributes than is
laid out in Stoneman. In addition, the ALS database definition
explicitly recognizes associations among information fragments as
a special type of information fragment attribute having a set of
pointers as its value.

Because the ALS/N is a variation of the ALS for specific,
Navy target computers, the ALS'N architecture, given in Figure 7.
is identical to that of the ALS. The tool layer in the ALSoN
provides for additional sets of tools such as ones that provide
support for working with MTASS-developed software. In addition.
the definition of the ALS/N explicitly defines an architecture for
the physically separate part of the environment that runs on the
various 16and 32-bit target computers toward which the environment
is oriented. The architecture of this Run-time Executive part of
the overall environment is pictured in Figure 8.
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The architecture for the AIE is given in Figure 9 and is,
again, essentially the Stoneman architecture. In the AIE, the
database is explicitly defined as a virtual machine layer and this
leads to the elaboration, in the AIE, of the KAPSE layer as shown
in Figure 9. The structure of the database itself, shown in
Figure 10, is considerably more elaborate than specified in
Stoneman -- this follows from the more explicit delineation of the
tools provided by the AIE and specific attention to the problems
of supporting configuration management and version control.

2.1.2.3. The Arcturus Environment

The APSE implementation efforts discussed in the previous
subsection have all tended to elaborate the inner virtual machine
layers. In another APSE-related effort, the emphasis has been on
elaborating the outer layers. This is a research effort being
carried out over the last five years at the University of
California, Irvine, and has resulted in a prototype system named
Arcturus [29].

The Arcturus prototype offers execution with both compiled
and interpreted Ada, template-assisted Ada text editing, tools for
measuring the performance of Ada programs and displaying the data
in easily interpretable form, formatted listing of Ada programs
that can be easily controlled to match individual preferences. a
program design language compatible with Ada, and assistance for
refining designs into executable code. This list of capabilities
emphasizes that the focus has been on the user interface and the
facilities provided from within the APSE virtual machine layer.
This emphasis is reflected in the architecture of the Arcturus
system, given in Figure 11, which indicates a refinement of the
APSE layer within the Stoneman architecture.

2.1.2.4. Extensibility Aspects of Ada Environments

All of these specific architectures for Ada environments are
variations on the theme established in Stoneman. They share the
characteristic that the environment is structured as a layer of
virtual machines that provide their defined capabilities through
the use of the capabilities provided by lower level virtual
machines. Our observations about the extensibility aspects of Ada
environments are therefore stated with respect to the Stoneman
architecture but should be understood to apply to all the specific
architectures discussed above.

The definition of the KAPSE layer provides for the
portability of an Ada environment -- as such. it does not directly
contribute to extensibility as we have defined it for the purposes
of this study.

The layered structure of the environment facilitates
extension by providing a variety of fixed points that can
potentially remain unchanged when modifying the environment In
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response to a change in the requirements for the environment
interface. To provide a new capability at the interface, the hope
is that it could be implemented upon the MAPSE using the
capabilities of this higher-level virtual machine. Thus, not only
would the implementation proceed more quickly because of the
high-level language nature of the MAPSE, but the newly created
environment would result from the re-use of at least all of the
previous MAPSE and KAPSE. For some changes, however, it may be
necessary to make changes in the MAPSE or even the KAPSE. Because
the expectation is that changes in these deeper layers in the
environment would be infrequent, the net result of a layered
architecture such as found in Ada environments should be a
decrease in the average effort to extend the environment.

Extensibility is also enhanced by the use of attributes to
describe information fragments and the fact that the attribute set
can be arbitrarily extended. If a change requires new types of
information fragments then these can be installed in the
environment by the ad'ition of new attributes that reflect these
new types of fragments. If the old attributes remain unchanged,
then any parts of the system that rely on them can also remain
unchanged. If some of the old attributes have to change then only
those parts of the system that rely on them will have to be
inspected for possible change.

2.1.3. Gandalf

Gandalf is a family of environments, each intended for
different audiences, that share a common paradigm as to how
software systems should be developed [20]. The paradigm
emphasizes the incremental preparation of software by teams of
people with the extensive use of automated support stemming from
the environment-processable description of project team and
software system structures in addition to the description of the
software itself.

The Gandalf project was begun at Carnegie-Mellon University
in 1978 with the intent of developing an Ada programming support
environment which did not necessarily use the layered
architectural structure espoused in Stoneman. The focus was on
providing support for the programming of software systems by teams
and so the emphasis was on supporting programming, configuration
management and team interaction activities. Over the years. the
emphasis on Ada has lessened, but the environment's scope of
activity coverage has remained essentially the same.

2.1.3.1. Architecture of Gandalf Environments

The paradigm supported by Gandalf environments does not
require the eyed, e.g. "show the value of variable A at this
point in the program". The system automatically causes the
appropriate actions to be taken to be able to achieve the
requested effect. Depending on what changes have been made to the
code for the modules, this may involve any or all of



recompilation, reconfiguration or re-execution.

Thus a user's view is that a Gandalf environment is a
* monolithic system that does not have tools or collections of tools

in the traditional sense. Most of the literature on Gandalf
emphasizes this view and none of it provides an architectural
diagram per se. From the literature discussing the ways in which
Gandalf capabilities are implemented, the architectural view given
in Figure 12 can be inferred but the suitability of this

40 architecture has not been verified.

2.1.3.2. Extensibility Aspects of Gandalf Environments

Because of the uncertainty as to the exact architectural
structure of Gandalf environments, our observations pertain to

0 enhancing extensibility by hiding the environment's actual
architecture from its sers, providing the capability to
(semi-)automatically generate parts of the environment, and using
declarative descriptions for the activities supported by the
environment. These contributors to environment extensibility
appear more extensively in the Gandalf work because of its concern
for the development of a family of environments.

One hallmar% of Gandalf environments is the separation of
concern for how to develop software from concern for how
individual tools are used to support this development. The
monolithic interface to a Gandalf environment does not reflect a
traditional set of tools that relate to the usually recognized
steps such as compilation. In addition, the interface constrains
users to think and work directly in terms of the system's
description (that is, the system's code). Thus the interface
reflects the paradigm used for software development and the
representation of the system but does not fix the tool set
provided for following the paradigm or manipulating the
descriptions. This enhances the environment's extensibility
because the exact nature of how various effects are achieved is
hidden from the users and therefore does not have to be preserved
when making a change in the environment's design or
implementation.

Another hallmark of the Gandalf work is use of well-defined
languages to capture both information about the system being
developed (in addition to information about its operation) and
information about the nature of the project itself. This
information is traditionally held outside the environment (if it
is recorded anywhere) but is needed in Gandalf environments to
support the automatic performance of activities such as change
control and system regeneration. These languages enhance
extensibility because the environment itself is prepared to
interpret and follow the directives that are encoded in these
languages and can therefore support new ways of doing business as
long as these new ways can be described.

This aspect of the Gandalf project tends to lead to



environments that exhibit the ultimate in extensibility, namely,
the environments do not have to be changed at all in response to
changes in the way of doing the business of software creation or
evolution. As long as the languages are general enough, then the
result of any changes in the way of creating or evolving software
can be described using the languages and the system, given the new
description, can support the new approach without change. Rarely,
however, can the languages be defined to be general enough. But
it is useful to head in this direction and separate the
specification of what is to be done from the mechanism of
performing it through the use of well-defined languages for
describing software and project characteristics.

The Gandalf project has also extensively relied on the
automatic generation of processors for descriptions in the
languages. This means that changes (reflected in changes in
descriptions in the languages) can be fairly easily accommodated
because the processors can be automatically changed. This
enhances the extensibility of an environment because changing the
environment can be easily done as long as the new requirement for
the environment can be captured as a change in the descriptions in
the languages.

2.1.4. Unix

The Unix operating system (17] was initially developed, at
Bell Telephone Laboratories, in the very late 1960's in an attempt
to provide the same services on small computers found in modern
operating systems for large mainframe computers. Over the years,
its popularity has spread, particularly within the academic
research community, and it is currently widely available and a
major operating system for 32bit micro-computers.

Viewed as an environment, Unix is a loosely integrated
collection of tools supporting a wide variety of approaches to
software creation and evolution. Many of the tools are simple
ones that perform text transformations or processing of general
utility. There are also many more-powerful, high-level tools for
specific tasks, such as document preparation, found during
software development and maintenance. Few, if any, of the tools
are wedded to a particular way of performing software creation and
evolution -- the tools are, for the most part, general-purpose
ones that can be used in a variety of ways to support a variety of
methodologies.

2.1.4.1. Architecture of the Unix Environment

The Unix operating system has a very simple layered
structure, pictured in Figure 13. At the core of the system is a
kernel operating system providing facilities for process
management and the transfer of information between processes,
among other things. The rest of the system is a collection of
tools that run on the virtual machine provided by this kernel. A
command language processor, which is just one of the tools,
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provides a capability to write programs controlling tool
invocation (including the recursive invocation of the command
language processor itself).

Unix provides a more or less standard file system for the
storage of information fragments. The file system is hierarchical
with file names indicating the directory path needed to access a
file. Some use is made of naming conventions to determine which
files or tools to use 'in response to a user's command, but this
automatic interpretation of file names is rare. Users may
establish naming conventions to aid in the categorization of
information fragments, but the system provides no direct help in
interpreting file names for the purpose of storing information
fragments into and retrieving information fragments from an
information repository.

Viewed statically, the collection of tools has no structure
(although one could view the operating system services as a lower
level collection of tools). This "flat" collection of tools can
be dynamically structured (and re-structured) into any general
network structure needed to perform the necessary processing.

Partially this network structure can be developed using the
ability to call any tool from within any other tool. This
capability allows rather general, hierarchical structures of tools
to be created.

The more general means of developing an arbitrary network
structure is to use the Unix capability to "pipe" information from
one tool to another without having to build temporary files in
which to store the information. This allows the tools to be
rather freely cascaded together in whatever way is required as
long as the needed structure is a simple sequence of tools. Some
versions of Unix provide the capability to create more general
tool sequencing structures in which the output of one tool may be
directed, as input, to several other tools.

In sum, the architecture of Unix itself defines that the tool
collection is a flat collection of tools and the means exist for
this tool collection to be dynamically structured in rather
arbitrary ways.

2.1.4.2. Extensibility Aspects of the Unix Environment

As in Ada environments, the innermost virtual machine layer
is primarily an assist for portability and therefore of little
assistance for extensibility as we have defined that architectural
issue.

However, the Unix kernel has some facilities that are useful
in extending the Unix environment. Many of the traditionally
immutable parts of a kernel operating system are, in the Unix
kernel, defined via user accessible and changeable data structures
such as tables. (One notable example is the definition of the
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characteristics of terminals used for interactive access.) Thus,
these aspects can be freely changed to meet new requirements that
end up requiring changes to the kernel in order to accommodate.
This is another example of technique for facilitating
extensibility that appears in the Gandalf environments -- separate
definition of the data controlling some activity and use of an
interpreter of this data so that new requirements can be
accommodated by changing the data rather than changing the
processing of'the data.

Extensibility of the Unix environment is also facilitated by
the fact that a small number of "standard" kernels have evolved
over time. These kernels have been propagated fairly extensively
throughout the community with the result that tool development can
proceed independently and in parallel at various Unix sites. As a
result, there is a higher probability that a need for a new tool
to meet some new environment interface requirement may be met by
looking to other parts.of the Unix community and importing the
tool from some other location.

Enhancing this support for extensibility is the practice
within the Unix community to prepare small tool "pieces", rather
than large, monolithic tools, that can be cascaded or otherwise
combined to provide some needed high-level capability. This
(almost extreme) decomposition of the tools into small fragments
increases the probability that a tool fragment will be found when
a need for it arises to accommodate some change in the
requirements for the environment interface. (It should be noted
that the efficient support for combining tool fragments, provided
by the Unix kernel, is critical to the success of this assistance
to environment extensibility.)

Another extensibility aspect of this high granularity
decomposition of tools along with support for the efficient
combination of tool fragments is that it encourages and assists a
prototyping approach to tool development. With the large number
of generalpurpose tool fragments that have evolved over time, it
is fairly easy to quickly generate functionally accurate but
perhaps inefficient versions of a newly needed tool -- usually
this can be done in a matter of days for even rather complicated
tools. Thus a request for a new environment interface can be
accommodated, to some degree at least, very quickly. This has the
usual effect of permitting the exact nature of the requirements
for the tool to evolve through use of prototype versions. It also
has the effect of being able to extend the environment quicklywhile letting the performance or capability characteristics of the
extension reach an acceptable level more slowly.

This is really just a particular effect of the fact that the
tool fragments in Unix are set up to be dynamically and freely
combined in whatever way might be needed to provide capabilities 2
at the interface. The fact that it can be done quickly and lead
to a functionally accurate but perhaps inefficient result aids
prototyping. The fact that it can be done at all provides



extensive support for extensibility. This is because it assists
the implementation of new tools by re-using existing tool
fragments along with newly created ones.

2.1.5. Knowledge-Based Software Assistant

The Knowledge-Based Software Assistant (KBSA) is a research
project aimed at producing a software development environment
supporting a knowledgebased perspective on the software

* development and maintenance process. The intent is to "introduce
a fundamental change in the software lifecycle maintenance and
evolution occur by modifying the specifications and then
re-deriving the implementation rather than attempting to directly
modify the optimized implementation." The goal is to have all
software development and maintenance activities carried out at the

* specifications and requirements level, not the implementation
level. "The transformation from requirements to specification to
implementation will be carried out with automated, knowledge-based
assistance." KBSA was defined in a report produced by Kestrel
Institute for Rome Air Development Center in 1983 [11].

The KBSA itself is intended to "put the machine in the loop",
i.e., have all activities carried out during software development
and maintenance mediated by the KBSA. The result would be an
environment that would monitor, capture and reason about those
activities and serve as a knowledgeable assistant to the human
software developer.

2.1.5.1. Architecture of KBSA

As indicated in Figure 14, the KBSA architecture is intended
to be centered around a core called the 'framework'. The
framework will coordinate and direct all activities in the

* environment. It contains the activities coordinator, which makes
the actual decisions regarding KBSA activities and the
knowledge-base manager, which provides the coordinator with
information about the software development process and its current
status as well as managing all the information fragments related
to the software project under development. All agents, human and
mechanized, involved in the project would be known to the
activities coordinator, whose role is to enforce policies and
procedures governing their actions. The policies and procedures,
in turn, would be described to the activities coordinator via a
language, and that information stored by and accessed via the
knowledge-base manager.

The framework in the KBSA architecture coordinates the
activities of a set of "facets", which may be thought of as sets
of tool fragments applicable to various lifecycle activities, a
set of project management tools and a support system comprising
certain fundamental environment utilities such as version control
and an inference engine. The user interface is also considered
part of the support system in the KBSA architecture.
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2.1.5.2. Extensibility Aspects of the KBSA Architecture

The major extensibility aspect of the KBSA architecture is
the activities coordinator. The fact that the activities
coordinator can accept, store and reason about knowledge regarding
the software development process has significant implications for
extensibility. It means that, in principle, a modification to the
methodology being employed in a project utilizing the KBSA could
be accomplished merely by informing the activities coordinator,
using the language provided for that purpose. The activities
coordinator would then use its knowledge of the process and of the
agents available in the environment to implement the revised
methodology. Moreover, it suggests that a change in the set of
agents (e.g., addition of new tools with new capabilities) would
simply require informing the activities coordinator, which would
then incorporate that knowledge into its knowledge base for future
reference. Situations in which the new agents might be useful
would subsequently be recognized by the activities coordinator
when they arose, and the coordinator would call the agents intoplay at the appropriate times.

2.1.6. Smalltalk-80

The Smalltalk-80 [14) system was developed by the Learning
Research Group at Xerox Palo Alto Research Center. Smalltalk-80
combines a programming language and a programming environment, and
the two are highly intertwined.

The fundamental viewpoint of Smalltalk-80 is
object-oriented. Smalltalk-80 programs, and similarly the
Smalltalk-80 system, are composed entirely of objects which send
messages to one another. A message may ask an object to perform
one of its methods, which is an operation that the object knows
how to carry out. Each object is an instance of some class of
objects, and all objects in a class have exactly the same set of
methods defined for them. Thus the set of methods defined for a
class of objects strictly circumscribes the ways in which any
instance of the class may be manipulated, since objects ignore any
messages asking them to perform any method that is not defined for
the class to which they belong. An added richness in this object
class structure is achieved through the notion of subclass and
inheritance. If a class of objects is defined to be a subclass of
some other class, then the subclass inherits all of the methods
defined for that other class.

2.1.6.1. Architecture of Smalltalk-80

The Smalltalk-80 system consists entirely of classes and
objects. A Smalltalk-80 software developer creates a software
system by defining new classes and objects, often as subclasses of
pre-existing classes found in the Smalltalk-80 system. In a
similar fashion, an environment can be fashioned by creating a set



of useful classes and objects.

The actual implementation of Smalltalk-80 is divided into two
parts. The Smalltalk-80 Virtual Image constitutes most of the
Smalltalk-80 system, including the compiler, debugger, editors,
decompiler and file system. This is itself written in
Smalltalk-80. The Smalltalk-80 Virtual Machine provides a host on
which the Virtual Image can be executed. The virtual machine,
which is relatively small, must be written in some language
already available on the host computer. The gross architecture of
the Smalltalk-80 system is therefore a simple two-level hierarchy
of virtual machines.

2.1.6.2. Extensibility Aspects of the Smalltalk-80 Architecture

4 Smalltalk-80 is a thoroughly object-oriented system. This
facilitates extensibility by making modification of the
environment and its components much easier to carry out. The
Smalltalk-80 style of programming encourages prototyping, which
also contributes to extensibility. Finally, the layered virtual
machine structure of the Smalltalk-80 system may be seen as
facilitating extensibility.

2.1.7. Joseph

The Joseph environment (22] was designed and partially
implemented at Cray Laboratories in the very early 1980's. It was
developed to support the creation of kernel systems software for
high-performance, multipleprocessor computing facilities. It was
specifically intended to be developed in parallel with its use,
primarily because it was required that the effort to develop
Joseph be amortized over the lifetime of the kernel systems
software development project which it supported. Joseph was

* therefore intended to be a highly extensible environment.

Cray Laboratories was closed by its parent company in 1982
and so a full implementation of the Joseph system was never
achieved. Nonetheless, a base for the Joseph environment was
constructed and tools assisting the description of kernel systems
software requirements and design were installed on top of this
base. Analysis tools for reasoning about requirements and designs
were not developed. The environment was used to develop the
requirements and preliminary design for a multiple-processor
kernel operating system.

2.1.7.1. Architecture of the Joseph Environment

Joseph has a layered architecture (see Figure 15) with each
layer being a virtual machine supporting the implementation of
higher layers. None of the layers completely encapsulates the
lower layers -- the user of any particular layer can get to it and
any of the layers underneath it.

The Unix operating system is used as the lowest layer in
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Joseph. It provides basic operating system services and the full
complement of tools available within the Unix environment.

The next outermost layer in Joseph provides a flexible,
primitive information repository. It is assumed that the
information fragments stored in this repository are generally
small, on the order of 20-200 characters. Support is provided for
the storage of larger information fragments as files, but this was
never needed in developing the rest of the Joseph environment.
(This capability probably would have been used when tools
supporting implementation were added to Joseph.) Each fragment can
be annotated with an arbitrary number of <key,value, attributes
and these attributes are used to both catalogue the information
fragments and retrieve them. The query language is a
generalpurpose information retrieval one in which the user can ask
for fragments satisfying a relatively general criterion stated in
terms of specific, string-match, or numeric-range values for
various keys. If the pre-established ways of stating queries
proves insufficient, then the user my prepare a program that
performs the selection based on attribute values and cause this
program to be used as part of the retrieval process.

The outermost layer of Joseph provides multiple sets of
tools, one set for each major phase of development. The tools
available in each set are similar in purpose and implementation
and are tabledriven to allow them to be re-used for the differing
languages supporting development during the differing phases.
Thus there is really one set of tools and different tables are
used to make the tools support different life cycle phases. Each
of the tools is highly decomposed to allow for multiple use of
common tool fragments. This decomposition also allows the
efficient delivery of various capabilities because it was found
that some capabilities could be provided by utilizing just a few
of the tool fragments rather than an entire tool itself. The
decomposition of tools was guided by the desire to have common
parts and the desire to find more primitive tools that could, by
themselves, provide some of the capabilities requested for the
environment interface.

2.1.7.2. Extensibility Aspects of the Joseph Environment

The layered structure of Joseph facilitated extensibility by
providing fixed "machines" that were general enough to support the
implementation of new capabilities. Providing an information
repository "machine" was particularly helpful in that it provided
the means to organize and freely retrieve highly decomposed
structures of information.

The decomposition of information into small fragments
supported extensibility by allowing the easier handling of new
documents. The use of a very general attribute scheme for
categorization of fragments meant that new documents could always
be defined in terms of some retrieval criteria and an associated
tool for formatting and displaying the retrieved fragments.



The decomposition of the tools into general-purpose tool
fragments, along with the tendency to make the tool fragments
tabledriven as much as possible, also facilitated extensibility.
Implementation of a new capability, such as the capability to
process descriptions pertinent to an additional life cycle phase,
generally required just the development of a new table reflecting
the new languages.

Extensions requiring new tools, rather than just new tables,
were also easy to make. Partially this was because of the general
support that the Unix "philosophy" (a large collection of
relatively small, general tool fragments) provides for expanding
the set of tools. It was also facilitated by carefully defining
the table formats and contents in a way which facilitated the use
of the tool fragments available in and added to Unix.

2.1.8. Distributed Computing Development System

The Distributed Computing Development System (DCDS) [2] has
been developed over the last decade by TRW Defense Systems Group,
Huntsville, Alabama, under contract to the Army Ballistic Missile
Defense Advanced Technology Center. In its original form, called
Software Requirements Engineering Methodology (SREM), it was
intended to support the definition and analysis of software
requirements. This original system has been extended over time to
cover the activities of system requirements definition, software
high-level and detailed design, and allocation of modules in a
software system to the physical processors in a distributed
computing facility. The system is compatible with a variety of
programming languages and emphasizes no programming language in
particular.

DCDS is, therefore, an environment supporting a wide spectrum
of life cycle activities (from system requirements analysis
through detailed design) during the creation and evolution of
distributed, concurrent software systems. DCDS provides a variety
of languages for describing software during the various life cycle
phases. It also provides a variety of analyzers for reasoning
about software specifications and the system they describe. Some
support is provided for moving between phases by deriving new
descriptions from old or tracing back a sequence of descriptions,
but this is largely left to developer intuition, experience, andexpertise.

2.1.8.1. Architecture of DCDS

The architecture of DCDS is depicted in Figures 16 through
18. The static view provided by the first three of these views is
similar to the architectures given previously -- it reflects a
virtual machine hierarchy that progresses from the outermost
command language interpreter "machine" to the innermost machine
which is the environment host. The more dynamics-oriented view in
the last of these Figures indicates the more network-like
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structure that stems from considering the flow of information
within the system.

The central part of the DCDS system is the Extended
REquirements Validation System (EREVS). EREVS provides the tools
for entry and retrieval of information into the database and
derivation of information useful in analyzing a software system
for suitability during its creation or evolution. EREVS is an
enhancement of the analogous REVS system that was provided within
the SREM system and has a layered structure as depicted in Figure
19.

The software description languages provided by DCDS are all
relational in nature. A software system is considered to be a
collection of entities that have attributes and are related to
each other -- two modules in a communications system might, for
example, have attributes that indicate their status (ready, full,
etc.) and a "sends message to" relationship between them. A
variety of relationships are predefined and users may extend the
set of attributes with others of their choice.

The analysis capabilities include the ability to "trace"
relationships to find interactions or relations between parts
which are not directly related, the ability to perform various
static analyses on the flow of data within a system, and the
ability to perform simulations of partially designed systems.
These analysis capabilities are provided by EREVS in response to
user requests through the user interface.

The database within the DCDS system is a fairly standard one
except that, for efficiency reasons, large blocks of text are
stored separately from attribute and relation information. One
could consider the database to logically be a traditional file
system on top of which has been added a processor of attributes
and relations providing the capability to use this information in
entering and retrieving blocks of information stored in the files.

2.1.8.2. Extensibility Aspects of DCDS

The software description languages provided by DCDS are based
on a variet' of formal models of computation. But they all rely
on an entity-attribute-relation notation for stating the software
models. Because the languages are notationally similar, the EREVS
analyzers provide a single set of tools supporting the differing
reasoning activities occurring during different life cycle phases.

DCDS can be fairly easily extended to support new ways of
performing software creation or evolution, or new aspects of some
particular way, by either extending the languages themselves or by
creating new languages that use the entity-attribute-relation
notational mechanism common to the existing languages. When
extension is done in this way, the analyzers are able to work on
descriptions in the new languages to support any newly required
reasoning capabilities.



The languages currently defined for DCDS already have the
ability for users to define the syntax and semantics of new
constructs as long as these new constructs adhere to the
underlying entity-attributerelation notational mechanism. Thus
the languages already support the dynamic extension of the system
to cover the description of new characteristics of a software
system and the analysis of these aspects.

The evolution of the DCDS system relied upon the ability to
cover new life cycle phases by creating new languages appropriate
to the new phases but utilizing the common
entity-attribute-relation notational mechanism. SREM covered only
the software requirements phase of development through the use of
a language that employed an entityattribute-relation notation to
describe finite-state models of the software's user interface.
Analyzers were developed to allow reasoning about the requirements
through operations such as tracing a sequence of relations or
analyzing for the presense or absence of specific relations.
Extension to cover system requirements definition was accomplished
by defining a new entity-attribute-relation-based language
permitting the capture of functional decomposition models of
systems. And extension to cover software design was accomplished
by defining additional entity-attribute-relation-based languages
permitting the capture of network communication models of the
software's logical and physical structure. At each of these
extension steps, the already present analyzers could immediatelyo be used to support at least some of the required reasoning
capabilities.

The DCDS experience indicates that a fruitful approach to
extensibility is to couch all description languages in terms of a
common, integrating notational mechanism. This admits the
possibility of reuse of analysis tools to support new reasoning
requirements. The generalization of this approach would be to
have a common internal representation for the variety of languages
available to environment users. In such a case, the environment
could be extended to support the capabilities reflected in a new
language by creating the tools which transform descriptions in the
language into the common internal representation and the tools
which perform reasoning about descriptions in the new language in
terms of the existing tools which support reasoning about
descriptions in the common internal representation. In essence,
DCDS has used this common representation (that is, the
entity-attribute-relation notation) at the user interface and
required users to transform their various models into this
representation.



2.1.9. FASP

The Facility for Automated Software Production (FASP) has
been developed by the Advanced Software Technology Division of the
Naval Air Development Center, Warminster, Pennsylvania. Its
original release was in 1975 and provided a batch capability
supporting development for the Advanced Signal Processor. Since
this initial release, it has evolved to provide extensive
interactive and batch, life cycle, programming and management
support for projects producing Navy standard software written in a
variety of languages and intended to run on one of a variety of
target computers.

2.1.9.1. Architecture of the FASP System

The architecture of the FASP system [16] is pictured in
Figure 20. The unshaded areas of this Figure indicate those parts
of FASP that are common to all instances. The shaded areas
reflect parts that are particular to a specific instance of FASP,
providing the capabilities to work with a specific language and
prepare software for a specific target computer. (The Figure
indicates that FASP is hosted on a CDC Cyber. While this is true
for most instances, versions are available which run on a VAX
11/780.)

The heart of the FASP environment is the Procedure Level
which acts as an intermediary between the users and the operating
system. Users specify operations in terms of a
keyword-plus-parameters command language. These commands are
converted into a sequence of operating system directives by the
procedure level, which also oversees the flow of data during the
execution of these operating system commands. The procedure level
also checks for legality of commands, thereby being able to
enforce methodological rules and guidelines.

The FASP database provides a hierarchical file system. A
userinvisible part of the database provides the definitions of the
operating system "programs" needed to respond to user directives
in the command language. Users can prepare their own "programs"
of commands and have these "programs" interpreted by the
mechanisms in the procedure level.

2.1.9.2. Extensibility Aspects of the FASP System

The FASP environment is also an instance of architecting an
environment as a hierarchy of virtual machines. As such. it
supports extensibility in many of the same ways as the other
environments discussed previously.

Adding a new tool to FASP involves making it a part of the
inner layers of the environment and then adding the appropriate
procedures to allow the tool's invocation in response to user



commands. Thus. changes to the capabilities at the environment

interface can be accommodated by acquiring or building the
appropriate, required, new tool fragments, installing them in the
inner portions of FASP, and preparing procedures that deliver the
new capabilities by invoking the appropriate tool fragments.

Extensions to data storage capabilities are straightforwardly
handled as long as they meet the file-level granularity of the
FASP database system. Changes at a higher level (such as the
handling of groups of files) or that extend below this level can
be accommodated to the extent that software can be prepared to
carry out any necessary processing and installed as
procedure-reachable tools in the FASP environment.

The inclusion of a procedure level within the environment is
therefore the primary support for extensibility provided by the
FASP environment. The extent of this support in various
situations depends on the extent to which a change can be
accommodated by developing new tool fragments as needed, capturing
any information fragment changes through tools that work on files,
and preparing the procedure(s) which control the invocation of
tool fragments to deliver the newly required capabilities to the
user.

Extensibility in FASP environments is also enhanced by the
conscious decision to provide common tool fragments as much as
possible. This has stemmed from desires to be able to port the
environment and to be able to support a variety of programming

languages and target systems. But, it means that there is a
collection of generalized tool fragments that can enhance the
ability to provide new capability by the re-use of existing tool
fragments.

2.2. Other Extensibility-related Capabilities

2.2.1. Interface Contracts

Imperial Software Technology, Ltd. (IST) has developed the
concept of interface contracts as a structuring mechanism for
software development environments. As reported by Vic Stenning of
IST in an invited talk at the 1984 Ada Applications and
Environments Conference, this model structures the interactions
among components of an environment by mimicking the contractual
process found in the business world. Each component has a
technical specification, a management specification and a set of
acceptance criteria, and each is responsible for producing some
specified deliverables. The environment is then organized as a
hierarchy of contracts and projects are decomposed by contracts
(and subcontracts). each having its own contract database.
Unfortunately, the details of the interface contract mechanism are
proprietary, so little more is known about it.

The interface contract mechanism could contribute to
extensibility by supporting well-defined interfaces in an
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environment, which in turn eases modification to the environment
and its components.

2.2.2. Common APSE Interface Set

The Common APSE Interface Set (CAIS) has been defined over
the last four years in an attempt to establish a basis for the
transportability of tools and interoperability of data across Ada
environments [1]. In essence, it refines and elaborates the rough
definition of a Kernel Ada Programming Support Environment
appearing in the Stoneman document [6].

The CAIS provides low-level facilities for both tool
implementation and the structuring, management and organization of
data. The tool implementation support is in the form of a virtual
machine that supports sets of interacting processes. The data
structuring, management and organization support is in the form of
an entity/attribute "database" that allows working with large
collections of information fragments of varying sizes,
constructing larger collections of these fragments, and performing
the configuration management needed as the contents of these
fragments and collections evolve over time.

CAIS would contribute to the extensibility of an environment
by providing a fairly high-level, "fixed" base for the
environment. The relatively high level of the CAIS capabilities
would enhance the ability to add new tools and information
fragments with less work than would be required on a more
primitive virtual machine. The possibility that a variety of
environments will use the CAIS as their host

will increase the probability that newly required tool
fragments will already exist and need only be imported to aid in
providing newly required capabilities. In sum, CAIS reinforces
the enhancement of extensibility to be found in environments with
layered architectures by providing a relatively sophisticated base
to serve as the an environment host or as the inner layer of the
environment's implementation.

2.2.3. Diana and IDL

Diana, a Descriptive Intermediate Attributed Notation for
Ada, was developed by researchers from Carnegie-Mellon University,
the University of Karlsruhe and Tartan Laboratories [10]. It is
based on two earlier proposals for intermediate forms for Ada --
TCOL (or more precisely, the Ada version of TCOL), developed by
the PQCC project at Carnegie-Mellon. and AIDA. developed at the
aiversity of Karlsruhe.

Diana is intended as an intermediate representation for Ada
programs. As such, it represents a natural collection of
information fragments for communication between the front-end and
back-end of a compiler. It is also intended, however, to be
useful as way of communicating among other tools in an Ada
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software development environment. Diana is designed to encode the
information about an Ada program that can be derived from lexical,
syntactic and static semantic analyses, but not to contain

41 information resulting from dynamic semantic analysis, optimization
or code generation.

Diana is most properly viewed as an abstract data type,
defining a class of information fragments. Any instance of that
abstract data type, i.e., any specific information fragment, is a

0 Diana representation of a specific Ada program. Diana itself
defines a set of operations providing the only means for accessing
or modifying an instance of the abstract data type. Although the
Diana reference manual offers example implementations for the
abstract data type, these only constitute constructive proofs that
Diana can be implemented and do not serve to define what Diana
actually is.

The concept of an attributed tree serves as a conceptual
model for Diana. That is, a Diana representation of an Ada
program may be thought of (though it need not be implemented as) a
tree of nodes, each of which may have a set of attributes
associated with it. Therefore, the definition of Diana is given
in terms of a set of classes of nodes and the attributes
associated with each class. Conceptually, at least, all
information about an Ada program's syntax and static semantics is
captured in this attributed tree.

0 By serving to provide an object-oriented approach to
information handling in a software development environment, Diana
contributes to the potential extensibility of environments. The
object-oriented view isolates tools from the details of the I
implementation of information fragments and thus facilitates
modifications to the environment.

The Interface Description Language, IDL, was developed at
CarnegieMellon and employed by the developers of Diana ([15],
[19]). I

IDL provides a notation in which abstract descriptions of a
class of data objects, especially information interfaces, can be
formulated.

IDL is especially well-suited for describing information
fragments used by tools in a software development environment
since it treats all data objects as (possibly degenerate)
attributed trees. The main descriptive capabilities of IDL are
aimed at defining the various classes of nodes and their
associated attributes comprising tions for the same information.
Therefore, IDL concentrates on supporting abstract descriptions of
information fragments rather than description of the
implementation details related to those fragments. IDL does.
however, permit specification of some implementation detailsthrough a 'representation specification' feature similar to Ada's.

~ d ' ~ . . ,



Associated with IDL is a processor for translating IDL
definitions of information fragments into implementations that can
be used by the tools in a software development environment. This
processor assumes a somewhat restrictive structure for tools and
their interactions, but given that structure it is sufficient to
automate the process of going from an IDL description to the data
structure definitions and code necessary to implement the fragment
defined by that description.

Like Diana, IDL contributes to the object-oriented approach
to information handling in a software development environment,
since it offers a mechanism for defining abstract data types and
generating instances of those types. Moreover, IDL facilitates a
rapidprototyping approach to environment development by making it
easy to generate the information fragments that are components of
an environment. Both of these facets of IDL make it valuable for
extensibility.

2.2.4. Precise Interface Control

The PIC language features and toolset are an outgrowth of the
Precise Interface Control (PIC) project at the University of
Massachusetts [30]. These PIC facilities are intended to support
programming-in-the-large activities. The language features
provide a means for expressing module interconnection descriptions
while the toolset allows users to obtain interface consistency
reports. Module interconnection descriptions contain information
about the access that a given module requests to other modules and
the access to its own contents that the module is willing to grant
to other modules. Interface consistency reports indicate whether
the requests and grants of access that have been made by various
modules are harmonious or conflict.

The PIC language features and toolset support extremely precise
description and enforcement of interfaces. If used in building an

environment, they could contribute to its extensibility by
supporting well-defined interfaces among the environment's
constituent tool fragments and information fragments, which would
greatly facilitate modifications to the environment and its
components.

3. Architectures for Extensible Environments

3.1. Required Capabilities

3.1.1. Synopsis of Current Capabilities

Section 2 presented a range of examples of environments and
extensibility-related capabilities. Here we distill out the
salient features of existing environments that assist
extensibility. Thus the following list provides a condensed
overview of the extensibility aspects discussed in the previous
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section, highlighting the various techniques and approaches that
are currently being used to support environment extensibility.

3.1.1.1. Decomposition of tools and information into fragments

Toolpack, Gandalf, Unix and Joseph all illustrate the
extensibility benefits resulting from an architecture based on
flexible composition and re-use of tool and information fragments
rather than inflexible, monolithic tools or units of information.
(Recall that for Gandalf the user's view is of a monolithic
environment but the system itself is decomposed into fragments.)

3.1.1.2. Small granularity of tool and information fragments

Toolpack and Unix are especially good examples of the
extensibility benefits that result from keeping the tool and
information fragments that compose an environment small, thereby
greatly increasing flexibility.

3.1.1.3. Layers of virtual machines

All of the architectures surveyed had some sort of layered
structure. The architectures of the Stoneman APSE and Joseph
provide specific illustration of how an architecture organized as
multiple layers of virtual machines can facilitate extensibility,
by providing well-defined 'invariants' in the environment
structure to assist in making changes and by providing a set of
general purpose, high-level utilities that can contribute to
tool-building and enhancement.

3.1.1.4. Object-oriented information handling

Toolpack and Diana/IDL provide approximations, but
Smalltalk-80 is the best example of the extensibility benefits
arising from the objectoriented approach. The inheritance concept
of Smalltalk-80 is particularly valuable for facilitating
extension.

3.1.1.5. Productor result-oriented user interface

Both Toolpack and Gandalf hide the tool activation view of
their operation from the user, providing instead a declarative,
productor result-oriented view in which the user specifies what is
wanted rather than how to produce it. This facilitates
extensibility by retaining total freedom to modify the tools and
activation patterns of the environment's implementation without
altering the user's view.
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3.1.1.6. Internal, Accessible Representation of Environment
Activities

Toolpack offers a first step in this direction through its
provision of the dependency graph. KBSA carries it to a much
richer, more extensive, more flexible and potentially more
valuable level.

3.1.1.7. Well-defined interfaces among tools and information
fragments

Toolpack provides a rudimentary version of well-defined
interfaces, through its use of file extensions and the dependency
graph. IST's contract model goes further toward establishing a
stereotyped, homogeneous interface among environment components.
The PIC constructs and tools offer more precise specification of
interface relationships and capabilities for checking the
consistency of those specifications. Diana and IDL provide an
abstract information interface and a means for defining other such
interfaces, respectively.

3.1.1.8. Isolation/Independence among tools and information
fragments

All of the tools and capabilities that contribute to
well-defined interfaces concomitantly contribute to isolation and 0
independence. The PIC constructs and tools go a bit further by T
providing a means for precisely limiting the availability of tools
and information fragments so as to both maximize and make
explicitly visible their isolation and independence.
3.1.1.9. Environment-oriented application generators

Gandalf and IDL are both examples of application generator
technology applied to environments.

3.1.1.10. Support for environment prototyping

The application generators associated with Gandalf and IDL
provide support for prototyping of environments. Unix, due to the
ease with which tools can be integrated into its pipe-based
structure, can also be seen as supportive of environment
prototyping.

3.1.1.11. Common Basis for Languages and Analyzers

The common use of the element-relation-attribute framework .
throughout DCDS, and the table-driven re-use of tools in both DCDS
and Joseph, are examples.
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3.1.1.12. Extensible Languages

The languages used in DCDS are explicitly extensible.
Stoneman APSE environments and Joseph both employ a database model
which can be seen as having an extensible query language.
3.1.1.13. Standardized Core

Unix, through its kernel, and the Stoneman APSE environments,
through the CAIS, provide standard cores on which additional
environment capabilities may be relatively straightforward to
construct.

3.1.2. Missing Capabilities

If distilling out common approaches to extensibility based on
a set of examples is difficult, identifying missing capabilities
on that basis is even harder. In the short time available for
this study, no obvious, glaring lacunas were discovered. Many of
the capabilities that do exist could be provided in better or more
mature ways, and further important capabilities may well be
identified in time. But while the need for further exploration
and experimentation is clear, obvious shortcomings in currently
available set of capabilities for supporting extensibility are
not.

3.2. Architectural Principles and Guidelines

The above survey of existing approaches to environment
extensibility suggests some general principles and guidelines that
should govern the development of architectures for extensible
environments. These principles and guidelines are discussed in
this section.

The first eight principles and guidelines concern properties
that the architecture should possess. Some of these pertain to
the overall structure of the architecture. Some pertain to the
nature of the information and tool fragments defined by the
architecture.

PG #1: The architecture should provide a layer of object
types and operations that is intermediate to the defined
environment interface and environment host layers.

-- this amounts to decomposition of the object types and
operations provided by the environment into ones that
are useful in implementing the environment capabil-ties

-- this intermediate level should probably be actually
implemented 0

-- the intermediate layer provides an opportunity for
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standardization at a level above the operating system
level

-- it also provides the opportunity, if it were adopted
for other efforts, to absorb the work of others into the
environment

PG #2: The architecture should provide several layers.

-- each will provide a potential invariant in the
environment's structure to facilitate changes

-- the interests of extensibility are best served if the
layering is 'strict', i.e., if each layer is implemented
entirely in terms of capabilities provided by the next
lower layer and does not directly refer to any
capability provided by any layers below that one

-- the interests of efficiency are best served if the
layering is not 'strict', since a strict layering generally
introduces high overhead from superfluous context switching;
of course, this efficiency penalty can be minimized or even
eliminated by suitably intelligent support for the
implementation language (e.g., optimizing compilers)

PG #3: The interfaces to the information and tool fragments
should be well-defined.

-- this enhances ease of modification

-- these should be machine processable so that reasoning
about interfaces and interactions can be supported by
automated tools

PG #4: The interfaces to the information and tool fragments
should be general.

-- this enhances the opportunity for multiple use or I
re-use

PG #5: Tools and information fragments should be as
independent and isolated from one another as possible.

-- the interactions should be through well-defined I
agreements (interfaces)

PG #6: The definition of the architecture should separate out
interpretable information describing the intended processing
as much as possible.

3A

pp



I

PG #7: The architebture should not be directly visible to
* users of the environment.

-- this enhances the freedom to modify the architecture

PG #8: The architecture should be based upon a central

information repository.

-- even if it is not implemented as a single centralized
utility, a conceptually unified information repository
simplifies the problems of adding tool or information
fragments to an environment

-- it should be possible for developers of tools to
access information fragments as if they were held in a
central repository, even if the actual implementation is
a distributed database

The remaining principles and guidelines concern properties
that the process of developing an architecture for an environment

should possess if the resulting architecture is to facilitate
extensibility.

PG *9: The tool fragments and information fragments should be
defined with the intent of multiple use in realizing the
environment capabilities.

PG *10: The tools and information structures provided by the
environment interface should be highly decomposed in
developing the tool and information fragments defined by the
architecture.

PG #11: Definition of the tool and information fragments
should take into account fragments that have already been
defined in other environment design efforts.

PG *12: Requirements and/or specifications for the
environment should indicate possible enhancements so that
likely extensions can be anticipated and allowed for in
design of the architecture.

-- this is akin to planning for upward compatibility

PG *13: The definition of the tool and information fragments
should be guided by the ability to automatically re-generate
new versions.

-- developers should consider already known
re-generation techniques

-- they should also develop new techniques for
regeneration
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PG #14: Decisions on tool implementations and data
representations should be deferred as long as possible.

-- delayed binding time will decrease the probability
that early decisions will make later modifications
difficult or impossible

3.3. Alternative Architectures for Extensible Environments

Presenting detailed examples of architectures is premature
and beyond the scope of this study. It is, however, instructive
to consider broad classes of architectures which might be employed
in an environment and the relationships among those classes. This
provides a starting point for considering the problem of comparing
and evaluating candidate architectures for an environment.

In considering possible classes of architectures, we will
look at several that are not layered. This might seem to
contradict our guidelines, enunciated in the preceding section,
that endorse layering. But, it should be noted that almost all of
the environments covered in the survey from which those guidelines
were derived had layered architectures, which led to the inclusion
of a guideline favoring layering in that list. A list of
candidate architectures, generated from first principles rather
than from a survey of existing environments, could be expected to
violate some or all of the guidelines that arose from cataloging
prior experience, and that is precisely what happened in the caseof the layering guideline.

3.3.1. Some Classes of Architectures

In this section we describe four classes of architectures.
Since an architecture is a conceptual organization for an
environment, what we present here are four different
conceptualizations for how an environment might be organized.
Each conceptualization, or general architectural class, might have
any number of realizations or implementations. A single
implementation might also be viewed from more than one conceptual
perspective and hence represent more than one specific class. Our
interest in this section is solely in the conceptual view -- the
architecture -- so implementation issues will not be consideredfurther here.

The first class of architectures to be considered may be
characterized in terms of 'conditions' and 'triggering'. That is,
the conceptual view of an environment whose architecture is in
this class is that events are triggered, or occur, in the
environment when certain conditions hold. For example, given the
conditions 'source program present' and 'executable version
requested', a 'compilation' event might be triggered. Similarly.
the condition 'test run completed' might cause the event 'test
results displayed' to occur.

%I



A second class of architectures can be described as
federations of objects, where some or all of the objects are
instances of abstract types. In this conceptual view, an
environment is composed of groups (federations) of objects, and
the operations that can be performed on, or by, at least some of
those objects are constrained to be within a predefined set. The
predefined set of operations is just those prescribed in the
definition of the abstract type to which the object belongs (i.e.,
of which the object is an instance).

A third class of architectures may be characterized as a
collection of concurrent processes communicating with one another
via messages. Environments whose architectures fall into this
class are explicitly assumed to admit the possibility of
concurrent operation among their component parts, although an
environment in which no concurrent activity in fact occurred could
perfectly well be viewed from this conceptual perspective.

A final class of architectures may be described as a layered
organization of tool and information fragments. The layers in
such an architecture may be based on any of a number of
relationships. For example, the fragments in one layer might
define a virtual machine which is used to implement the layer
above it. In this case the upper layer would be related to the
lower layer by the 'implemented using' relationship (i.e., a
fragment in the upper layer is 'implemented using' one or more
fragments from the lower layer) while the lower layer would berelated to the upper layer by the 'used in implementing'

relationship (i.e., a fragment in the lower layer is 'used In
implementing' one or more fragments in the upper layer).

3.3.2. Relationships Among Classes of Architectures

As a first step toward comparing and evaluating classes of
architectures, it is necessary to characterize the architectures
and the relationships among them. A complete characterization is
beyond the scope of this study, but in this section we suggest a
starting point for characterizing the relationships among the
sample classes of architectures listed in the preceding section.

One dimension along which classes of architectures might be
compared is the way in which the interrelationships among their
constituent parts are constrained. In terms of the examples
considered in the preceding section, we can distinguish three
distinct points along this dimension:

-- unconstrained: neither the conditions and triggering
architecture class nor the concurrent parts and messages
architecture class implied any particular constraints on the
interrelationships among their constituent parts

-- federated (or grouped): some amount of grouping is imposed
by the architecture, as in the federation of objects
architecture class described in the preceding section
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-- hierarchical: a grouping and one or more relationships
among the groups is imposed by the architecture, as in the
layered architecture class considered in the preceding
section

Another dimension along which classes of architectures might
be classified is the type of interactions among their components.
Here again we can distinguish three points along this dimension
based on our example classes of architectures:

-- procedure call invocation: active components in both the
federated and the layered classes of architectures interact
via procedure calls, and synchronous message passing among
concurrent processes (e.g., Ada rendezvous) may also be
considered to be an instance of this type of interaction

-- triggering: active components in the conditions and
triggering class of architectures interact indirectly, with
conditions caused by one potentially leading to triggering of
another

-- asynchronous message passing: active components in
architectures from the concurrent parts and message passing
class may interact through this mechanism, in which the
sender of a message need not await receipt of that message by
some recipient before continuing with its work

Another way in which classes of architecture might be
compared is according to how highly structured architectures in
the various classes are. The four example classes given in the
preceding section can be said to be listed in increasing order
based on how highly structured they are. The conditions and
triggering class of architectures can be considered the least
structured, since architectures in that class are described
entirely in terms of a list of conditions and triggers. The class
of federation architectures can be considered to consist of more
structured architectures, since constituents in the architectures
of this class have been grouped in some fashion. Architectures in
the class 3haracterized by concurrent parts and message passing
are yet more structured, since constraints on the type of
interactions have been imposed. Finally, the layered class of
architectures might be considered to be the most structured of the
four classes, due to the constraints on the organization of those
architectures imposed by the relationships defining the layers.

3.4. Comparison/Evaluation Criteria

It would obviously be desirable to be able to objectively
evaluate architectures or classes of architectures with respect to
their support for extensibility. Developing criteria by which
such an evaluation can be carried out will require more effort
than could be brought to bear in the current sudy, however. Inthis section we provide some suggestions and starting points that
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may eventually lead to the development of such criteria.

Several ways of evaluating the extensibily properties of an
architecture or class of architectures might be considered. These
include:

-- a figure of merit for each architecture or class; this
would produce an absolute ranking on which comparisons could
easily be made

-- relative comparisons of architectures or classes; this
would not give absolute rankings but would allow any given
pair of architectures or classes to be compared and hence
could yield a favored choice

-- determination that a given class of architectures did or
did not facilitate extensibility; this binary clasification
scheme would only yield a set of acceptable choices for
extensibility, not a clear choice

It seems that the central problem to be addressed in
establishing any of these comparison methods is to delineate a
suitable set of characteristics and relationships that can be used
to characterize environment architectures. Given such a set, some
scale or metric for evaluating the characteristics and
relationships would then be needed in order to permit a comparison
of the architectures as a whole to be performed.

Our preliminary effort at delineating relationships among
classes of environments, as contained in the preceding section,
illustrates the complexity of this problem. First, it is
difficult simpluitable set of characteristics. The dimensions of
interrelationships and interactions both seem significant, as does
the characterization based on how highly structured an
architecture is. Yet these two seemingly related
characterizations do not have any obvious well-defined
relationship to one another. Moreover, even given a set of I
characteristics or relationships, it is not clear how to assign
values for an architecture based on that set. One can argue, for
example, that a more highly structured architecture facilitates
extensibility, on the grounds that it limits the possible
ramifications of modifications, or that a less highly structuredI
architecture is better for extensibility, on the grounds that
modifications require less effort. Similarly, assigning a figure
of merit to a property such as layering (Are three layers too few?Are eight too many?) is problematic.

The conclusion is that comparison and evaluation criteria for
extensibility of environment architectures is an area deserving
further study, preferably of an empirical nature. Whle it seems
unlikely that an absolute ranking mechanism will emerge, at least
in the near term, it should be possible to do a significantly
better Job of evaluating architecture extensibility properties
than is possible at present.
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3.5. Tradeoffs with Other Architectural Characteristics

Even assuming that the extensibility properties of
environment architectures could be accurately assessed, it may not
be appropriate to select an environment architecture based solely
on that assessment. Tradeoffs between extensibility and other
properties of an environment architecture will need to be
considered. Here we discuss several such tradeoffs that seem
particularly significant.

The impact of extensibility on the extent of integration in
an environment must be a prime consideration. Certain approaches
to facilitating extensibility, such as maximizing independence and
isolation among the components of an environment's architecture,
could tend to reduce integration. Given the importance of
integration to the productivity of software developers, increased
extensibility might well not be worth the price of decreased
environment integration. While there is no reason to believe that
extensibility and integration are necessarily antithetical, the
impact that specific approaches to extensibility may have on
integration bears careful consideration.

Efficiency may also be negatively affected by certain
properties of environment architectures that are intended to
increase extensibility. As was noted earlier, for example, a
layered architecture may result in a significant efficiency
penalty if not carefully implemented. Here again, there is no
obvious reason that efficiency must suffer drastically if an
architecture is to provide good support for extensibility, but the
potential tradeoff must be kept in mind.

A final possible tradeoff is between support for
extensibility and the verifiability properties of an environment
architecture. It is possible, for example, that an architecture
which makes an environment easier to modify will make it more
difficult to prove secure. While this seems unlikely, it probably
merits some attention.

3.6. Relationship with Other Architectural Design Issues

The topic of extensibility is related to several other
architectural design issues being considered in other studies like
this one. Those relationships are briefly considered here.

Architectures that support good human engineering share
several features with architectures facilitating extensibility. A
central tenet of the human engineering study is that human
engineering requires a great deal of malleability in an
environment. This makes human engineering and extensibility
natural allies. The suggestion from the human engineering study
that an environment's architecture should segregate those
components handling the user interface is in harmony with the
extensibility principle that favors layered architectures.
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Similarly, the human engineering considerations favoring a r
prototyping capability also argue for the provision of tools
supporting automatic generation of environment components, which
is a desirable feature from the perspective of extensibility as
well. Finally, the human engineering principle that favors a
separation of concerns tends to support an environment
architecture in which information controlling the environment's
behavior is encoded in a form interpretable by the environment
itself, which once again is a seemingly valuable attribute for
extensibility.

Distributed computing and extensibility are also related.
Isolation of parts, which may be a valuable architectural trait
for extensibility, should facilitate distributed computing. As
noted previously, however, the provision of a conceptually
centralized data repository, for extensibility reasons, may impose
some added requirements on the kinds of distributed environment
architectures that would be acceptable.

There is also a clear relationship between the topics of
extensibility and information interfaces, since well-defined
interfaces, and the technology to support this property, are
evidently an important contributor to facilitating extensibility.
Conversely, an architecture with good extensibility properties is
likely to impose some significant restrictions on the types of
information interfaces found in an environment.

Methodology support and extensibility are also linked, since
the primary motivation for an architecture facilitating
extensibility is to allow for methodological changes. In
particular, by circumscribing a set of potentially acceptable
methodologies one might well restrict the extent and direction of
possible extensions to an environment, which would clearly havemajor implications for extensibility.

Finally, as noted previously, extensibility and multi-level
security may be related, to the extent that support for
extensibility impedes verifiability of an environment.

4. Strategies for Creating and Evolving Extensible Environments 0

Extending an environment is inherently a process of change.
One way to cope with the difficulty of such a process is to design
an infrastructure for the environment that is impervious to
change. Such an structure would be able to accommodate changes to
the complement of tool and information fragments without having to
change itself.

It is improbable that one can develop such an ideal
infrastructure. Doing so would require infinite insight into the
future so that the infrastructure was developed with complete
knowledge of both the nature and the details of possible future
changes. It would also require development of a infrastructure
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having a level of generality that is probably beyond our ability
to create and would certainly have a degraded, and possibly
unacceptable, level of performance.

The attributes of architectural infrastructures that are
highly, but not necessarily totally, impervious to environment
interface changes was, in essence, the subject of the previous
section. In this section, we turn to the complementary topic of
establishing a growth pattern for environments that simplifies and
eases the process of extending them. In our discussion, we
include, but do not make special recognition of, changing an
environment's architectural infrastructure when that proves
necessary to accommodate changes to the environment's
functionality.

4.1. Impact of Extensibility on Environment Creation and
Evolution

In any process of decision making, early decisions establish
a context for later ones, shaping the issues that must be
subsequently addressed and constraining the options available for
resolution of an issue. One effect is-that changing an earlier
decision can have a relatively far reaching impact. It can
potentially invalidate many of the later decisions, and it can
open the door to new options that were not previously considered.
Another effect is the importance of trying to place early in the
process those decisions that will not severely, and certainly not
overly, constrain the options available for resolution of later
issues. Preserving a large number of options can increase the
quality of later decisions because of the greater variety of
options available. It can also increase the probability that
later decisions can be changed without having to remake earlier
ones in order to provide a richer set of options.

Creating and evolving an environment is a decision making
process. Creating and evolving an extensible environment is a
decision making process which must accommodate change as easily as
possible. As such the process should adhere to three principles
suggested by the previous discussion:

Principle of Late Binding: aspects of the environment that
are likely to change should be fixed as late as possible

Principle of Option Preservation: aspects of the environment I
that are fixed early should minimally constrain the options
available at later points in the process

Principle of Decreasing Generality: aspects of the
environment that are fixed early should be as general as
possible but the environment's aspects fixed late in the
process need not have a high level uf generality

In the rest of this subsection, we will address the general
impact of trying to adhere to these principles. In the next two
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subsections, we then discuss the impact on initial creation and
subsequent evolution, respectively. In the final subsection, we
will indicate tools that can enhance our ability to extend an
environment over time.

To be able to adhere to any of these principles, we must know
at least the general nature, if not the specific details, of
changes that will likely be requested. This suggests that we
should expand the scope of the requirements definition phase
beyond merely specifying the capabilities to be provided to
include the specification of likely enhancements. For any sort of
environment, this means that the specification of capabilities
supporting specific activities must include information about how
these capabilities might be expanded or changed. In the case of
comprehensive, modern environments, there is the additional
implication that possible shifts to alternative paradigms for
creating and evolving software should be detailed in the
environment's specification.

Knowing about changes that might be requested will only
partially assist in ordering the decision making process so that
the above principles may be observed. In addition, we will need
the ability to determine tradeoffs among alternative orderings and
the ability to determine the impact of decisions on the options
available for other decisions. This suggests that investigation
of existing efforts, to learn about tradeoffs and the
option-restriction characteristics of various creation and
evolution scenarios, must be actively done in the early,
requirements definition, phase of developing an environment. It
also suggests that empirical studies will be needed to fill
knowledge gaps stemming from the lack of direct, existing
experience. It is important that these investigations and studies
address the issue of decision ordering rather than be designed to
merely garner the technical details of various options for the
decisions that will be encountered during environment creation and
evolution.

Knowing about future enhancements and determining how to best
order decisions to address tradeoffs and preserve options are
intuitively desirable. They are also a recognized part of modern 0
approaches to software creation and evolution. When we consider
the case of structuring an environment as a hierarchy of virtual
machines, however, we arrive at a suggestion that is both
counter-intuitive and somewhat at odds with modern practice.

Recall that a hierarchical virtual machine structure enhances
extensibility by providing 'invariants' -- the lower level
machines -- that can be preserved in the face of change. Relating
this to the principles stated above, this means that the lower
level machines should reflect decisions made early in the
environment creation and evolution process. This leads to the
suggestion that environment creation and evolution should progress
bottom-up through the virtual machine hierarchy.
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This is really a specific instance of a more general
suggestion: incorporate mechanisms that support a variety of
options and speed up the process of making a change once it has
been decided upon. General, powerful virtual machines are one
such mechanism. Table-driven language processors are another.
All such mechanisms support adhering to all of the principles
cited above and the principle of option preservation in
particular.

The overall process should therefore include extensive
determination of future enhancements, investigation of extant
approaches, empirical study of new alternatives, and early
attention to identifying and designing general primitive
mechanisms. When considered all together, these suggestions point
to use of a prototyping methodology for creation and evolution of
extensible environments. Investigation and empirical study are
almost synonymous with prototyping. Prototyping is generally
recognized as valuable for the clarification of requirements and
the determination of future enhancements is just an extension of
requirements clarification And prototyping offers a way to cope
with the dilemma of having to fix lower level aspects of a
hierarchically structured system early in the decision making
process by forcing the construction of admittedly immature
versions that then serve as empirical studies supporting the
creation of later versions.

Prototyping also offers the possibility of begging the major
issue of what should be done/decided first. With enough study and
investigation, it might be possible to determine the "correct"
order of decision making for extensibility -- in fact, had the
study reported on here been allotted more than two months for
completion, we may have come up with more extensive suggestions
for specific architectures or specific creation and evolution
scenarios. But the preparation of comprehensive, modern
environments is a high-risk activity with little guiding
experience -- and it is all the more so with the additional
requirement that the result exhibit a high level of
extensibility. Prototyping is the best, currently known approach
to coping with this risk and uncertainty [5] and its effect in
terms of foreshortening up-front planning and gedanken
investigation seems fully warranted after our relatively short
investigation of environment extensibility.

4.2. Scenarios for Initial Creation

Taken to the extreme, prototyping reduces initial creation of
an environment to a position of relative insignificance -- the
really important step is evolving the next version from the
previous one. Nonetheless. there are some relatively important
decisions that must be made initially before any versions are
constructed. These decisions concern the general nature of the
environment's structure and the way in which it delivers its
capabilities. In this section, we indicate what some of these
decisions should concern good and bad outcomes for the



decisions have been discussed earlier. To make our comments more
specific, we focus attention, in this and the next subsection, on
environments that are structured as a hierarchy of virtual
machines.

One issue of primary concern should be the rough
decomposition of the environment into a hierarchy of successively
more primitive facilities. This will form the basis for defining
and designing the environment's virtual machine layers. It' will
also help establish an overall "game plan" for carrying out the
prototyping because it will help in deciding whether the
prototyping should progress truly bottom-up through the virtual
machine layers or be a more broad-band approach in which
successive versions capture some of all the layers.

Making this rough decomposition amounts to determining
decompositions for the environment's tool and information
fragments. It will, therefore, require addressing the following
issues:

-- what will be the conceptual basis underlying the tool
fragments, for example, will they all view the software
modeled as communicating sequential processes?

-- what is the structural model for the documents available
through the environment's interface, for example, will the
documents be viewed as having a book-like structure with
chapters, sections, subsections, paragraphs, and sentences?

-- what is the environment user's view, for example, will
users think in terms of traditional activities such as
compilation, linking, etc.?

-- what sequences of activities will environment users
perform, for example, will they usually perform a data flow
analysis before execution but sometimes skip this activity?

-- which already available virtual machines (for example,
CAIS, the procedure "machine" in the FASP environment, or the
information repository "machine" from Joseph) should be used?

-- which generators, such as the syntax-directed editor
generator from Gandalf, should be employed?

Some decisions about these issues will follow from the
definition of the individual capabilities required of an
environment and the possible future changes to these
capabilities. Other decisions will follow from considering the
scenarios under which the capabilities will be used, which is to
say the general methodologies to be supported by the environment
over its life time. Still others will follow from considering the
technology that is available or on the horizon.

Another issue of primary concern should be the general "game
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plan" for later evolution of the environment. This requires
addressing the issues such as the following:

-- what will be the general schedule for releasing versions
of the environment to its users and what will be included in
each release?

-- should successive prototypes work up through the virtual
machine layers, should each capture some partt of all layers,
or should there be a combination of these extremes?

Decisions about these issues will establish the general
structure for the environment and the general framework underlying
its extension in the future. These decisions will also establish
the general growth pattern through which the environment will be
evolved and extended.

4.3. Scenarios for Evolving Environments

Evolving an environment structured as a hierarchy of virtual
machines is relatively straightforward. At each step, about the
only decision is whether to localize modifications to one of the
layers or make a more lateral move in which several layers are
modified. This will be affected by what has been released as well
as the nature of the required change. The point of making the
overall approach a prototyping one is tL t change will be the norm
rather than the exception and can therefore be driven more by
concerns for minimal impact on the users and the scope of the
required change rather than by concerns for the impact of the
change on the environment's structure or the technical feasibility
of actually making the change.

The scenario for evolving an extensible environment will be
impacted by whethe4 extensions can only be made by a single
organization or whether anyone who has the environment will be
able to extend it. Even if it is a policy that only a single
organization can make changes, it is likely that (unapproved)
extensions will be made by other organizations. In addition,
allowing any organization to extend the environment will increase
the probability that an extension has already been made somewhere
in the community at large when the requirement for this extension
arises. It is perhaps best, therefore, to establish a scenario
for evolution that does not localize responsibility for extension
but rather fosters extension by all members of the community and
establishes the mechanisms for propagating extensions throughout
the community and certifying that extensions adhere to quality
standards and rules for preserving the environment's basic
structure and underlying framework. (Such a scenario has been
defined in Appendix 6 of a recent study of programmatic
alternatives for the STARS Program [93.)

4.4. Automated Support for Creating and Extending Environments

In general, software tool support is needed to support a
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prototyping approach that uses standards and guidelines to
preserve commonality across a broad community of users. Specific
support is needed to be able to investigate tradeoffs, conduct

* empirical studies, discern the impact of proposed changes, assess
the validity of changes, and determine where changes have to be
made in order to accomplish some intent. Software tools
supporting these activities are discussed in this section under
several broad categories.

4.4.1. Instrumentation and Monitoring Tools.

Guidance for changing the environment's interface and
responding to required changes to the interface requires data
about what capabilities are being used and how they are used. An
extreme example would be being able to, as a side effect of a

0 required change, completely change some aspect of the
environment's interface without ill effect if it were known that
this aspect had not been used by any of the users. A more normal
example would be having performance related information that would
help guide the reorganization of the environment should that ever
become necessary to extend it.

To gather this information, the environment must be
instrumented to collect information about the patterns of activity
carried out by the users and the internal processing needed in
response to environment use. Exactly what data should be
collected is, of course, determined by what issues must be

*addressed. Rarely is it completely known what data will be
needed, so a not-so-unusual practice is to collect as much data as
possible at a fairly low level of granularity, approaching (and
sometimes actually achieving) the level of keystrokes during
interactive use. This obviously will impact the performance of
the environment itself and so every effort is needed to focus the

*data collection on that which is really needed and an appropriate
level of data granularity.

Tools to automatically instrument a software system have been
developed -- the ones available in the Toolpack environment [8]
are representative. These usually place data probes under the
guidance of statements made at the source level for the system.
They are also usually oriented towards collecting the data needed
for system testing, but it should be possible to easily adapt them
for environment extensibility purposes.

Data collection is only half the picture and the ability is
needed to analyze the data to discover distributions of statistics
and make inferences about use scenarios as well as patterns of
internal activity. Reduction of the data to statistical
distributions is straightforward and can be accomplished by the
use of any of a variety of existing tools, for example, the ones
included in the DCDS environment. Tools supporting the analysis
of data to infer patterns of activity are generally not
available. There were some early attempts to provide tools thattried to infer environment usage patterns by analyzing a keystroke



history, but significant advancement in this area has been
lacking.

4.4.2. Configuration Management and Version Control Tools.

Any large-scale software development effort that extends over
a long period of time will need support for management of the

various configurations that arise and control of the numerous
versions that will exist. Prototyping approaches to this
development will only make the need more severe.

Configuration management and version control tools are widely
available. All of the current Government-sponsored APSE
implementation efforts will, for example, include such tools in
the resulting environments. And most modern operating systems,
Unix for example, include such tools. In addition, several firms,
among them Softool in Santa Barbara [26], provide standalone
configuration management and version control systems programmed in
higher level languages.

It is uncertain how well traditional tools will assist
grappling with the configuration management and version control
problems that arise during prototyping. The much larger number of
versions and the higher frequency of change will certainly stress
most tools to, and perhaps past, their limit. About the only way
to address this issue is to try some traditional tools in
prototyping situations and see how they hold up and where, if at
all, they are insufficient.

4.4.3. Tool and Information Fragment Decomposition Tools

Assistance will be needed to decompose information and tool
fragments to fit into the environment's infrastructure. To the
extent that it will be necessary to account for fragments that
already exist in the environment or elsewhere, this will largely
be a manual process that will rely on experience and general
knowledge. Some help for tool decomposition could be provided by
module "discovery" tools such as found in the Argus environment
[27] -- these would help identify tightly interrelated portions of
the system that are candidates for tool fragments. Extensive,
high-quality assistance will have to await more experience or some
direct, research attack on the problem.

4.4.4. Generic Tool Piece Parts.

Generic, reusable tool piece parts have been extensively
developed for compiler technology. General, table-driven lexical
analyzers and parsers have existed for over a decade and advances
have recently been made in extending the same concept into the
arena of compiler back-ends. These will be of high utility in
preparing extensible environments because of the basic need to
process the descriptions that users prepare. Their utility will
be even more extensive if the use of languages is extended to
describe more about an evolving software system than just its
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operation.

Other tools provided by an environment have recently been the
target of this style of implementation. For example, the
syntaxdirected editors provided within Gandalf environments are,
for the large part, reusable processors that work on specific
languages through the use of tables describing the languages. It
can be expected that more tools will be structured in this way as
they are more fully understood and it becomes more apparent what

fe information can be captured declaratively as opposed to
imperatively within the tool's code itself.

Another aspect of providing generic tools is to identify
primitive piece parts Ghat are of general utility in a large
number of situaticiu This has been done somewhat within the Unix
system -- many of its tools perform simple tasks and can
effectively be used in a wide variety of tools. Of particular
value in this regard are generic tool piece parts that perform
text manipulation -- a software engineer recently observed to one
of the authors that he used the egrep string matching tool in Unix
to either completely or partially do over 70% of the activities he
had to perform.

As noted above, effective use of generic tools requires
mechanisms for their efficient use. Thus, additional "tools" such
as the Unix piping facility and efficient mechanisms for driving
tools with tables of data will be required.

4.4.5. Tool Libraries.

As generic, reusable tool piece parts proliferate, tool
libraries will be needed to help organize them and make it easy to
identify what is available for specific situations. Standard
library facilities can be used to organize a collection of tool
fragments. More will be needed to catalogue them so that they can
be retrieved according to their dynamic as well as their static
characteristics. This problem has been discussed in [4] with
regard to the development of libraries for reusable software.

4.4.6. Tool Building Tools.

Currently, support for building tools is limited to the
capabilities discussed above with respect to generic tool piece
parts. For example, there are generators that create the tables
used to drive generic parsers, lexical analyzers, compiler
back-ends, and syntaxdirected editors.

It is difficult to identify what more is needed until we have
more experience with building extensible environments and other
software systems that require the rapid development of new tools
or variations of existing tools. This experience will help
identify processing that can be provided in a generic form. It
will also help identify techniques for generating specific
instances of the generic tools.



4.4.7. Analysis Tools.

Any software creation and evolution effort requires the
ability to analyze interactions among modules for suitability.
This requires analysis for correct use of an interface such as
determining that the types of arguments agree with the types of
the corresponding parameters. Tools for this sort of analysis are
commonly available, often as part of a compiler but frequently as
separate tools as in the DCDS environment. But as interface
definition becomes more complex, for example as a result of the
PIC and Interface Contract work discussed above, more extensive
capabilities will be required.

Analysis of module interaction also requires the ability to
assess the dynamics of interface usage over time. Most current
capabilities of this sort rely upon some of sort data flow
analysis, for example the dynamics analysis tools developed for
the Arcturus environment [281. But alternative approaches, such
as provided in the TOPD environment [241, have also been
developed. More work is required before these tools provide all
the functionality that is needed and exhibit acceptable
performance characteristics.

4.4.8. Standards Enforcement Tools.

Standards will play a role in environment extensibility in
order to support tool transportability and data interoperability.
They will also be necessary to help control the unrestricted
proliferation of tools and modification of the environment should
responsibility for extensibility not be vested in one organization
as suggested above. To the extent that standards are defined,
there will be a need to enforce adherence to the standards by
checking that they are observed.

Some standards will be very easy to check, for example
standards having to do with the form of information interfaces.
Standards that pertain to temporal characteristics, such as the
appropriate usage of tool piece parts over time, will be
considerably more difficult to check. The ability to check
observance of standards will, for the most part, co-evolve with
the ability to perform analysis that was discussed in the last
subsection.

4.4.9. Prototyping Support Tools.

All of the tool capabilities discussed above support a
prototyping approach to extensible environment creation and
evolution. In addition, variants of these tools or special tools
will be needed to support the basic philosophy of prototyping,
namely gradual maturation through the frequent preparation of new
versions which provide small extensions to previous versions.
This will largely affect the operational characteristics of the
tools that are used. It will also require tools that assist in
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quickly preparing new versions such as tools that help identify
where changes should be made and help install to quickly install
those changes.

An example of the additional sort of tool that will be needed
is the make facility in Unix for the generation of versions.
Again, more experience is needed to determine what is needed
beyond current capabilities.

4.4.10. Summary of Tool Support

Many of the tools needed to support a prototyping approach to
the creation and evolution of extensible environments exist
today. It will be a major task to collect these tools together
into an integrated environment supporting the development of
extensible environments. This integration will be complicated by
the fact that the environment for building an extensible
environment is most effectively the extensible environment itself
since we have suggested that the community using the extensible
environment be encouraged to extend it.

Enhancement of the tool set to something providing extensive
assistance must await more knowledge, gained through experience,
concerning where the current capabilities are deficient.

5. Conclusions

We have collected a great deal of information on
extensibility as evidenced by existing environments. And we have
made some preliminary inferences about general principles and
guidelines, future work needed to design an infrastructure for an
extensible environment, and generally beneficial characteristics
for the "game plan" used to create and evolve extensible
environments. We have not had the luxury of time to distill our
conclusions one level higher and identify the 'half dozen most
important things to do for achieving extensibility'.

We had a preconceived notion: to support extensibility one
should develop a highly flexible infrastructure that allows
maximal freedom in changing the elements of the tool set and the
information repository. We found nothing that contradicted this
notion. And we identified a large variety of ways to accomplish
this end.

The conclusions that stand out strongest in our minds are the
following:

-- use a hierarchical virtual machine structure (but we
caution, again, that this may be an artifact of the fact that
the existing environments we surveyed all had this structure
to at least some degree)

-- support a logical view of the information repository that
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allows attributes to be associated with information fragments
and associations among the fragments to be relatively
arbitrarily constructed; do not depend on being able to
predefine all attributes and associations and prepare and
provide for user-definitin of new ones

-- use a prototyping approach to create and evolve the
environment; do not rely on prototyping just to determine the
requirements, but rather have the production of successively
more mature versions be the basic underlying theme of the
process

-- develop a collection of tools supporting prototyping and
include this collection of tools in the extensible
environment itself

-- in preparing the collection of tools, look to using
declarative information and generators; make a concerted
effort to consolidate tools of this sort that exist today and
a determined effort to extend the range of capability of
these tools

I
6

1 527.

N



REFERENCES

a 1. Ada Joint Program Office. Common APSE Interface Set
Definition. Ada Joint Program Office, Department of Defense,
October 1984.

2. M. Alford. DCDS Environment Architecture Description.
45674G950-002R1. TRW Defense Systems Group, Huntsville,
Alabama, December 1985. (JSSEE Report Number JSSEE-ARCH-005.)

3. B. Bailey. Human Engineering Impact on the Stars SEE
Architecture, Institute for Defense Analyses Paper P-1818,
April 1985.

4. J. Batz, P. Cohen, S. Redwine, Jr., and J. Rice. The
applications-specific area. Computer, 16, 11 (November 1983),
78-85.

5. B. Boehm, T. Gray and T. Seewaldt. Prototyping versus
specifying: A multiproject experiment. IEEE Trans. on
Software Engineering, SE-10, 3 (May 1984), 290-302.

6. J. Buxton and L. Druffel. Requirements for an Ada programming
support environment: Rationale for Stoneman. Proc. IEEE
Compsac Conf., Chicago, October 1980, pp. 66-72.

7. G. Clemm. ODIN An Extensible Software Environment; Report and
User's Reference Manual. Technical Report CU-CS-262-84,
Department of Computer Science, University of Colorado, 1984.

8. W. Cowell and L. Osterweil. The Toolpack/IST programming
environment. Proc. SoftFair Conference, Arlington, Virginia,
July 1983.

9. R. DeMillo, A. Marmor-Squires, W. Riddle and S. Redwine, Jr.
Software Engineering Environments for Mission Critical
Applications -- Alternative Programmatic Approaches. IDA
Paper P-1789, Institute for Defense Analyses, Alexandria,Virginia, August 1984.

10. A. Evans, Jr. and K. Butler (eds.). Diana Reference Manual
(Revision 3). Technical Report TL 83-4, Tartan Laboratories
Inc., Pittsburgh, Pennsylvania, February 1983.

11. C. Green, D. Luckham, R. Balzer, T. Cheatham and C. Rich.
Report on a Knowledge-Based Software Assistant. Technical
Report RADCTR-83-195, Rome Air Development Center, Griffis
Air Force Base, New York, August 1983.

12. H. Hart et al. Report on a Workshop on Future APSE
Environments. To appear: Software Engineering Notes, April
1985.



13. Intermetrics. Architectural Description of the Ada Integrated
Environment (AIE). IR-MA-423, Intermetrics Incorporated,
Cambridge, Massachusetts, December 1984. (JSSEE Report Number
JSSEE-ARCH-003.)

14. G. Krasner. Smalltalk-80: Bits of History, Words of Advice.
Addison-Wesley, Reading, Massachusetts, 1983.

15. D. Lamb. Sharing Intermediate Representations: The Interface
Description Language. Technical Report CMU-CS-83-129,
Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, May 1983.

16. M. Lipczynski. Software Architecture of the Facility for
Automated Software Production. Advanced Software Technology
Division, Naval Air Development Center, Warmister,
Pennsylvania, December 1984. (JSSEE Report Number
JSSEE-ARCH-004.)

17. R. Mitze. The Unix system as a software engineering
environment. In: Hunke (ed.), Software Engineering
Environments, North-Holland Pub. Co., Amsterdam, 1981.

18. Naval Underwater Systems Center. Architectural Description of
the Ada Language System/Navy (ALS/N). Report 3511, Naval
Underwater Systems Center, Newport, Rhode Island, December
1984. (JSSEE Report Number JSSEE-ARCH-002.)

19. J. Nestor, W. Wulf and D. Lamb. IDL Interface Description
Language: Formal Description. Technical Report, Computer
Science Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, February 1983.

20. D. Notkin et al. Special Issue on Gandalf. J. Systems and
Software, to appear May 1985.

21. L. Osterweil. Toolpack -- An Experimental Software
Development Environment Research Project. IEEE Transactions
on Software Engineering, November 1983, pp. 673-685.

22. W. Riddle. The evolutionary approach to building the Joseph
software development environment. Proc. SoftFair Conference,
Arlington, Virginia, July 1983.

23. T. Standish. A Philosophy for a Tool Extension Paradigm.
Computer Science Dept., University of California, Irvine,
August 1982.

24. R. Snowdon and P. Henderson. The TOPD system for
computer-aided system development. In: Bergland and Gordon,
Tutorial: Software Design Strategies, IEEE Computer Society,
1979.

25. SofTech. Architectural Description of the Ada Language System

-p .A -A- . A ~ -



-g

(ALS). SofTech, Middleton, Rhode Island, December 1984. P

(JSSEE Report Number JSSEE-ARCH-001.) %1

26. Softool. Applicability of Softool's Change and Configuration

Control Environment to the DoD Software Life Cycle. Softool
Corp., Santa Barbara, California, n.d.

27. L. Stucki. What about CAD/CAM for software? The ARGUS

concept. Proc. SoftFair Conference, Arlington, Virginia, July
1983.

28. R. Taylor. A general-purpose algorithm for analyzing
concurrent programs. Comm. ACM, 26, 5 (May 1983), 362-376.

29. R. Taylor and T. Standish. Steps to an advanced Ada
programming environment. Proc. Seventh Intern. Conf. on
Software Engineering, Orlando, Florida, March 1984, pp.
116-125.

30. A. Wolf, L. Clarke and J. Wileden. Ada-Based Support for
Programming-in-the-Large. IEEE Software, 2, 2 (March 1985),
5871.

6

o.:Z4

"•..-7



El
N N
V T ENVIRONMENT
I E BODY
R R
O F
N A
M C
E E
N

ENVIRONMENT HOST

6Figure 1: A View of a Software A

Engineering Environment

z0



-. ~ ~ ~ ~ ~ ~ ~ ~,v inr wa P, S. e x i i i an in-a

VIKRTVXM FlEE SYSTEJ MOINDS

PHYSICAL FILE SYSTEMI

ENTIt It$

Figure 2: Toolpack Architecture

SOURCE

FORATTED
SOURCE

TOKIEN IS

IIISTRUIRENTED-
SOMRE

PA Pa X YMO

TREE TABLE

REPERECE

Figure 3: Example Toolpack Dependency Graph



F . flI U -U S Slff3FS. W'W Uf fS nl' b r . P FN rflPallW i r d ' r ' r r -s s pr-'v *..-W- * - ~

McEror T'*4%-oo(
A De~t

V% )v 
Tc'o'

Figure 4: Stoneman APSE Architecture



USER INTERFACE

TOTOOL

INTERFACE

igue5AaLnuaeSsemAciecue*

~90 fI
pf 10 "Siropawl



4..

C-

U

*6
.3

3

0 1*
U ~.

k A9

I A3 a .~ - -
~D~Z

U* I -S., 3
* S. *0

0

-~ .3

S I U J
U-U

cn
'C *. c~)

.2~ t~
I E

~- S Si p
0 = C

e r ** 0~ A E
a).~a- .. ce.,

*

a)
U

5 '.A

S -a C
I

I.
1. *

4.~.

0
U

6
I
0 ~.b

I ~

a- 0 £
* U U~ -

-. -. La..
OU -

3 3 9, 0

Ui~ ~: -3. a
6- -- ~- 0 0
-3 03 ~3*
L -- --
:i IS IS
3- 0~ --
* 0 0 -~1

I I
I I I
1

:~



ADDITION"
TOOLS

OleA

41

law 
0

at, 
%

5 9,1-

&#SRI

It 440 IlLf *4 P4 40 0

eckroc" , af* S,**C"&C*

IL 8 i0el

CDWO'4
"ILWPAClu" MOST MIDST TURCON-UMCATIO"S

OP9RATW$O

2787180

CIA

Do '%to 164 Cft.,

1,01%, All@
AWOL"

ODt 0 Of
C VP

00%, opo 4;-

%
,of AV,

;o It

% R
*V

Figure 7: Ada Language System/Navy Architecture



l' o.. I TARGET
OTH rRMOTION

APPLICATIONS ANALYSIS

S

LOADEDULE

RNUK4 UN-TIME i

AUN-TIME KERNEL RUN-TIME PERFORMANCE

SUPPORT EEUIEMEASUREMENT
LIBRARY AIDS

SONR1/0 DRIVERS DEBUGGER

NAVIGATION

Figure 8: Architecture of the Run-time Executive in the Ada
Language System/Navy

> .0

.. .. , . . . . . . . .. .. .. . ...- - • ,. ,.. . " " " .'. . ".," "." •". ' " -" •". ,. .,, .," ." "," ." "" "","".''I''€...'.,'.." U'.



lw- w Y-.. FJ.m

4 I
F~gure 9 Ada Intgrated Evironmet Acietr

10.

,*% ~V 5 *Q0



El"04

.1'

L11



Brcturuls

RPSE ~

~.. ger ....E

USER SE

Glass... Comoprtemna i ma

USER
Management Driven Completion interface interface....LEVEL

Editing Paradigm Paradigm

Castor Interpreter Compiler Irga veiiaion 'oi TOOL
Progam erifcato Ll LEVEL

ExplnatinoTstn au
E~cplantgon T sn ..

----------------------------------------------------------------- H
FOUNDATION

Ada Virtual Operating System LEVEL

Figure 11: Arcturus Architecture

66



I

DESCRIPTION PREPARATION TOOLS

CONSTRUCTOR UNPARSER

ACCESS CONTROL

PROGR AM D AT ABASE PROJECT D AT AB ASE

II

HOST OPERATING SYSTEM

3
Figure 12: Gandlf Architecture

7S



-p]

UNSTRUCTURED COLLECTION
OF

TOOLS

KERNEL

Figure 13: Unix -Architecture

"-p4

p°

6

, .:',..-'-' . ,. .,.. .?.? ? -.-.,? . ... ",',..".-, .- .? . . -. -'. . --'-.. ..'. .'o . .r".'... -n%.- .:



oLie-cycle Facets

Se i fcation28
Requirements Valdaton Development Performance Testing

Framework

prjct Managmen Activities
Coordinator

Policies 4 Procedure 4 Knwd Ba
TaskingManager

01

Support System

Version 4 Access Controls
Inference Engine
User Interface

FA
!

I
~-- w *~. ...~. 'q%%. ~ ~ ... '~ ~ p

~- .~ * * -t."1



REQ'TS DESIGN CODE

DEFINITION DEFINITION DEFINITION
-5& & &

ANALYSIS ANALYSIS ANALYSIS

IFORMAT ION MANAGEMENT

CORE ENVONMENT (UNIX System)

Figure 15: Joseph Architecture

PU

.1

2 I



US It
SSL AsL MWL 001. 7SL IISG

% -0% s

Figure 16: DCDS Architectural ViewI

USE A

VMSCOMMAN

VMS

Figure 17: Layered Architecture for DCDS

; Z- 1% *



USE R

ANAYSI
INERCIV..TV
EDTO A.

HE LI loom

EDITOR

UNIT

Figure 1: Layere Alockictreaorm

VMSCOMIMAN

LANGUAGE ~ .~ ~ 4.



.

"OIAIAND PRCESSO
rW

9W

.Oj~jAND EE~jjr

SASE A4.

MoS.

CDC.

CY'5-

Figure 20: FASP ArchitectureI

-116 lU



Distribution List for P-1828
DoQD

Col. Joe Greene 10 copies
Director, STARS Joint Program Office
1211 Fern St., C-107
Arlington, VA 22202

Mr. Jack C. Wileden
COINS Dept.
Lederly Graduate Research Center
University of Massachusetts
Amherst, MA 01003

Dr. William Riddle
Software Productivity Consortium
1880 Campus Common Dr., North
Reston, VA 22091

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22304-6145

CSED Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

." I *,'* ,". %% % .% % • a,, . % % - v . .' ."" . .. ~. % ' • " %* .. -"..- - r .. '..-':'-"* %



I,

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. AJ. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

Gen. W.Y. Smith, HQ
Mr. Seymour Deitchman, HQ
Ms. Karen Webber, HQ
Dr. Jack Kramer, CSED
Dr. John Salasin, CSED
Dr. Robert Winner, CSED
Ms. Katydean Price, CSED 2 copies
IDA C&D Vault 3 copies

2



* L~A7I~k~A ~ & .A~ ~


